Telegram Group & Telegram Channel
Разбираемся в генеративных моделях: Flow matching

Помните, в прошлый раз мы разбирали DDPM, где нужно было делать 1000 шагов для генерации? А что если я скажу, что можно сделать всё то же самое, но в разы проще и быстрее?

Сегодня поговорим про flow matching в его самой простой форме - linear interpolation. Если DDPM показался вам сложным, то тут вы офигеете насколько всё просто.

В чём основная идея? Вместо того чтобы учить модель убирать шум пошагово (как в DDPM), мы учим её находить прямой путь от шума к картинке. Да-да, просто рисуем линию из точки А в точку Б!

Как это работает:

1. Берём шум и настоящую картинку
2. Случайно выбираем точку между ними (это наше t)
3. Просим модель предсказать в какую сторону двигаться из этой точки

И всё! Вот честно - это весь алгоритм. Смотрите какой простой код для обучения:

def train_step(self, x0):
batch_size = len(x0)
z = torch.randn(batch_size, self.dim).to(self.device)
t = torch.rand(batch_size, 1).to(self.device)
xt = (1 - t) * z + t * x0 # линейная интерполяция между шумом и картинкой
pred_field = self.vector_field(xt, t)

true_field = x0 - z # вот оно - направление от шума к картинке
loss = F.mse_loss(pred_field, true_field)
return loss # возвращаем loss, а не x


А генерация ещё проще - просто идём маленькими шажками в нужном направлении:

def sample(self, batch_size=64, steps=100):
dt = 1.0 / steps
x = torch.randn(batch_size, self.dim).to(self.device)
for i in range(steps):
t = torch.ones(batch_size, 1).to(self.device) * i * dt
v = self.vector_field(x, t)
x = x + dt * v
return x


А теперь самое интересное - то что мы тут делаем, по сути решаем обычный дифур!

Наш vector_field это просто производная dx/dt, а в sample мы используем метод Эйлера для решения этого дифура. И тут открывается целое поле для экспериментов - можно использовать любые солверы: Рунге-Кутту, multistep методы и прочие штуки из мира численных методов.

В общем берите любой солвер из scipy.integrate и вперёд! Некоторые из них позволят ещё сильнее уменьшить количество шагов при генерации.

Главные преимущества по сравнению с DDPM:

- Не нужно возиться с расписаниями шума
- Процесс полностью детерминированный (мы же просто решаем дифур!)
- Генерация работает в разы быстрее
- Код настолько простой, что его можно написать за 5 минут

Я сам офигел когда первый раз это запустил - на многих задачах качество получается сравнимое с DDPM, а кода в три раза меньше.

Единственный небольшой минус - модель иногда бывает менее стабильной при обучении, т.к. нет стохастичности как в DDPM. Но это решается правильным подбором learning rate.

Flow Matching Guide and Code: https://arxiv.org/pdf/2412.06264



group-telegram.com/neural_cell/264
Create:
Last Update:

Разбираемся в генеративных моделях: Flow matching

Помните, в прошлый раз мы разбирали DDPM, где нужно было делать 1000 шагов для генерации? А что если я скажу, что можно сделать всё то же самое, но в разы проще и быстрее?

Сегодня поговорим про flow matching в его самой простой форме - linear interpolation. Если DDPM показался вам сложным, то тут вы офигеете насколько всё просто.

В чём основная идея? Вместо того чтобы учить модель убирать шум пошагово (как в DDPM), мы учим её находить прямой путь от шума к картинке. Да-да, просто рисуем линию из точки А в точку Б!

Как это работает:

1. Берём шум и настоящую картинку
2. Случайно выбираем точку между ними (это наше t)
3. Просим модель предсказать в какую сторону двигаться из этой точки

И всё! Вот честно - это весь алгоритм. Смотрите какой простой код для обучения:

def train_step(self, x0):
batch_size = len(x0)
z = torch.randn(batch_size, self.dim).to(self.device)
t = torch.rand(batch_size, 1).to(self.device)
xt = (1 - t) * z + t * x0 # линейная интерполяция между шумом и картинкой
pred_field = self.vector_field(xt, t)

true_field = x0 - z # вот оно - направление от шума к картинке
loss = F.mse_loss(pred_field, true_field)
return loss # возвращаем loss, а не x


А генерация ещё проще - просто идём маленькими шажками в нужном направлении:

def sample(self, batch_size=64, steps=100):
dt = 1.0 / steps
x = torch.randn(batch_size, self.dim).to(self.device)
for i in range(steps):
t = torch.ones(batch_size, 1).to(self.device) * i * dt
v = self.vector_field(x, t)
x = x + dt * v
return x


А теперь самое интересное - то что мы тут делаем, по сути решаем обычный дифур!

Наш vector_field это просто производная dx/dt, а в sample мы используем метод Эйлера для решения этого дифура. И тут открывается целое поле для экспериментов - можно использовать любые солверы: Рунге-Кутту, multistep методы и прочие штуки из мира численных методов.

В общем берите любой солвер из scipy.integrate и вперёд! Некоторые из них позволят ещё сильнее уменьшить количество шагов при генерации.

Главные преимущества по сравнению с DDPM:

- Не нужно возиться с расписаниями шума
- Процесс полностью детерминированный (мы же просто решаем дифур!)
- Генерация работает в разы быстрее
- Код настолько простой, что его можно написать за 5 минут

Я сам офигел когда первый раз это запустил - на многих задачах качество получается сравнимое с DDPM, а кода в три раза меньше.

Единственный небольшой минус - модель иногда бывает менее стабильной при обучении, т.к. нет стохастичности как в DDPM. Но это решается правильным подбором learning rate.

Flow Matching Guide and Code: https://arxiv.org/pdf/2412.06264

BY the last neural cell


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/neural_cell/264

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS.
from jp


Telegram the last neural cell
FROM American