Telegram Group & Telegram Channel
🦾Классический ML – база: справочник основных алгоритмов

🆙 Сегодня будем разговорить про основу основ – про существующие алгоритмы машинного обучения в рамках ключевого справочника, к которому вы сможете обратиться, если что-то вдруг забыли.

1️⃣ Линейные модели:

- Две части разбора алгоритма линейной регрессии и подготовка к собеседованиям по теме данной теме на нашем YouTube-канале: Ч.1 и Ч.2
- Про основы линейной регрессии читайте тут.
- Как насчет вспомнить работу логистической регрессии? Читайте подробный обзор про LogReg на Хабре.
- Также разберите особенности и принципы работы алгоритма "метод опорных векторов" на пальцах. В данном алгоритме есть ключевой гиперпараметр - kernel. С ним можете познакомиться по этой ссылке.
❗️Почитать про линейные модели от Яндекс Учебника можете тут либо изучить мини-курс по линейным моделям от ODS.

2️⃣ Деревья и их ансамбли:

- Понять работу решающих деревьев, на котором строятся самые сильные ансамбли, можете тут. Также для визуалов смотрите ML-Course про деревья и их ансамбли на ODS. Документация и объяснение работы решающих деревьев из scikit-learn.
- Разобраться, как работает случайный лес (RandomForest), можете, изучив следующие материалы: ML для начинающих с разбором RandomForest, про Бутстрэп и Бэггинг и документация scikit-learn.
- Бустим свои знания о градиентном бустинге. Также читаем статью "Градиентный бустинг - просто о сложном".

❗️Дополнительно:
- Про построение всех ансамблей в ML от Яндекс Учебника.
- Особенности алгоритмов CatBoost и LightGBM - статья на Хабре.
- Сравнение всех 3-х алгоритмов градиентного бустинга [ENG].
- Случайный лес в Spark ML.

3️⃣ Временные ряды:

- Хорошая статья про анализ временных рядом.
- Познакомиться с решением задачи временных рядов можно в статье на Яндекс Учебнике.
- Качественный вводный курс по ключевым моментам в задаче временных рядов.
- Модели вида ARIMA.
- Используем statsmodels для временных рядов или пробуем предсказать будущее с помощью библиотеки Prophet.

4️⃣ Кластеризация:


- Избыточный гайд по кластеризации в ML c теорией и практикой
- Кластеризация на Яндекс Учебнике
- Обзор всех методов кластеризации на scikit-learn
- Метод локтя - или как правильно выбирать количество кластеров
- Оценка качества кластеризации - полная статья на Хабре

🔥Курсы и доп. материалы:
- Осенний курс по всем ML-моделям от ODS
- Курс на GitHub с множеством русскоязычных ресурсов по всем темам Data Science и Machine Learning
- Старый, но всегда полезный курс Евгения Соколова по машинному обучению, выложенный на GitHub
- Англо-говорящим рекомендуется от ODS

☝️Помните: глубокое понимание каждого ML-алгоритма +1 к вашему спокойствию на следующем собесе!
🔝Не стесняйтесь в комментариях предлагать ресурсы и материалы, которыми вы пользуетесь!

Ставьте ❤️ и 🔥 за активный труд нашей команды!
65🔥26👍12❤‍🔥1



group-telegram.com/start_ds/504
Create:
Last Update:

🦾Классический ML – база: справочник основных алгоритмов

🆙 Сегодня будем разговорить про основу основ – про существующие алгоритмы машинного обучения в рамках ключевого справочника, к которому вы сможете обратиться, если что-то вдруг забыли.

1️⃣ Линейные модели:

- Две части разбора алгоритма линейной регрессии и подготовка к собеседованиям по теме данной теме на нашем YouTube-канале: Ч.1 и Ч.2
- Про основы линейной регрессии читайте тут.
- Как насчет вспомнить работу логистической регрессии? Читайте подробный обзор про LogReg на Хабре.
- Также разберите особенности и принципы работы алгоритма "метод опорных векторов" на пальцах. В данном алгоритме есть ключевой гиперпараметр - kernel. С ним можете познакомиться по этой ссылке.
❗️Почитать про линейные модели от Яндекс Учебника можете тут либо изучить мини-курс по линейным моделям от ODS.

2️⃣ Деревья и их ансамбли:

- Понять работу решающих деревьев, на котором строятся самые сильные ансамбли, можете тут. Также для визуалов смотрите ML-Course про деревья и их ансамбли на ODS. Документация и объяснение работы решающих деревьев из scikit-learn.
- Разобраться, как работает случайный лес (RandomForest), можете, изучив следующие материалы: ML для начинающих с разбором RandomForest, про Бутстрэп и Бэггинг и документация scikit-learn.
- Бустим свои знания о градиентном бустинге. Также читаем статью "Градиентный бустинг - просто о сложном".

❗️Дополнительно:
- Про построение всех ансамблей в ML от Яндекс Учебника.
- Особенности алгоритмов CatBoost и LightGBM - статья на Хабре.
- Сравнение всех 3-х алгоритмов градиентного бустинга [ENG].
- Случайный лес в Spark ML.

3️⃣ Временные ряды:

- Хорошая статья про анализ временных рядом.
- Познакомиться с решением задачи временных рядов можно в статье на Яндекс Учебнике.
- Качественный вводный курс по ключевым моментам в задаче временных рядов.
- Модели вида ARIMA.
- Используем statsmodels для временных рядов или пробуем предсказать будущее с помощью библиотеки Prophet.

4️⃣ Кластеризация:


- Избыточный гайд по кластеризации в ML c теорией и практикой
- Кластеризация на Яндекс Учебнике
- Обзор всех методов кластеризации на scikit-learn
- Метод локтя - или как правильно выбирать количество кластеров
- Оценка качества кластеризации - полная статья на Хабре

🔥Курсы и доп. материалы:
- Осенний курс по всем ML-моделям от ODS
- Курс на GitHub с множеством русскоязычных ресурсов по всем темам Data Science и Machine Learning
- Старый, но всегда полезный курс Евгения Соколова по машинному обучению, выложенный на GitHub
- Англо-говорящим рекомендуется от ODS

☝️Помните: глубокое понимание каждого ML-алгоритма +1 к вашему спокойствию на следующем собесе!
🔝Не стесняйтесь в комментариях предлагать ресурсы и материалы, которыми вы пользуетесь!

Ставьте ❤️ и 🔥 за активный труд нашей команды!

BY Start Career in DS


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/start_ds/504

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns
from jp


Telegram Start Career in DS
FROM American