Telegram Group & Telegram Channel
Таска с собеса в БКС Банк(DS)

Исходные данные:

Даны скрипты диалогов консультантов с клиентами

В ходе беседы консультант может:
🫴предложить приобрести продукт
🪙рассказать о выгоде нового продукта
📞назначить встречу для дальнейшего более детального обсуждения продукта
💱предупредить клиента об истечении срока действия продукта
🚀предложить перезвонить в более удобное время

Цель:
Разбить весь пул клиентов по уровню лояльности (high, low, average)

Вопросы к анализу:

🕶Нужно удалить выбросы
Какие критерии использовать для удаления некоторых диалогов?

Удалить пустые диалоги
(например, случаи, когда разговор был прерван),
а также те, в которых отсутствуют даты или названия финансовых продуктов
Исключить разговоры с ключевыми словами, указывающими на возможность повторного набора


🕶Придумайте подход для оценки У (это proxy переменная) экзогенным образом
Какие proxy переменные, на ваш взгляд, для этого подходят?

Можно использовать такие метрики, как ценность клиента на протяжении жизни (customer lifetime value),
коэффициент повторных покупок (churn rate), чистая прибыль, коэффициент выкупа, средняя сумма покупки


🕶С другой стороны, предположим, что лояльность У- это эндогенная переменная,
которая определяется набором признаков Х, значение которых определено в ходе диалога
Сформулируйте данный набор признаков, характеризующих лояльность,
а также значения, которые они принимают
(чем разнообразнее набор признаков, тем лучше)

Стоит обратить внимание на наличие в диалоге слов, которые указывают на лояльность или нелояльность пользователя
(бинарная переменная),
а также на определение тональности текста
и близость диалога к кластеру лояльных пользователей
(расстояние до центра кластера)
Также можно задавать маркетинговые вопросы напрямую


🕶Выберите форму зависимости и объясните ваш выбор
Опишите используемые метрики качества, а также использованные вами библиотеки, функции и методы анализа

Т.к. каждый диалог относится к определенному классу и разметки нет, это задача кластеризации
Для работы с текстовой кластеризацией подойдут методы word embedding из библиотеки
sklearn (CountVectorizer, TfidfTransformer) и gensim (word2vec), которые позволят преобразовать исходные данные в векторы для последующей кластеризации на нормализованных данных


🕶Определите границы значений рассчитанной величины лояльности У (если У изначально не категориальная переменная) для каждого уровня (high, low, average)
Устойчивы ли они?
Опиши способ подбора оптимальной границы

Y будет категориальной переменной, полученной в результате кластеризации, и важно, чтобы кластеры были максимально удалены друг от друга
Устойчивость кластеров можно оценить путем многократного применения алгоритма к данным: небольшие расхождения в результатах будут свидетельствовать о высокой устойчивости


🕶Опишите способ для упорядочивания выбранного вами набора признаков Х по степени важности для объяснения уровня лояльности У

Можно поочередно удалять признаки и отслеживать изменения в качестве классификации, что поможет выявить наиболее значимые из них

@zadachi_ds
Please open Telegram to view this post
VIEW IN TELEGRAM
14🔥3🐳3👍1



group-telegram.com/zadachi_ds/120
Create:
Last Update:

Таска с собеса в БКС Банк(DS)

Исходные данные:

Даны скрипты диалогов консультантов с клиентами

В ходе беседы консультант может:
🫴предложить приобрести продукт
🪙рассказать о выгоде нового продукта
📞назначить встречу для дальнейшего более детального обсуждения продукта
💱предупредить клиента об истечении срока действия продукта
🚀предложить перезвонить в более удобное время

Цель:
Разбить весь пул клиентов по уровню лояльности (high, low, average)

Вопросы к анализу:

🕶Нужно удалить выбросы
Какие критерии использовать для удаления некоторых диалогов?

Удалить пустые диалоги
(например, случаи, когда разговор был прерван),
а также те, в которых отсутствуют даты или названия финансовых продуктов
Исключить разговоры с ключевыми словами, указывающими на возможность повторного набора


🕶Придумайте подход для оценки У (это proxy переменная) экзогенным образом
Какие proxy переменные, на ваш взгляд, для этого подходят?

Можно использовать такие метрики, как ценность клиента на протяжении жизни (customer lifetime value),
коэффициент повторных покупок (churn rate), чистая прибыль, коэффициент выкупа, средняя сумма покупки


🕶С другой стороны, предположим, что лояльность У- это эндогенная переменная,
которая определяется набором признаков Х, значение которых определено в ходе диалога
Сформулируйте данный набор признаков, характеризующих лояльность,
а также значения, которые они принимают
(чем разнообразнее набор признаков, тем лучше)

Стоит обратить внимание на наличие в диалоге слов, которые указывают на лояльность или нелояльность пользователя
(бинарная переменная),
а также на определение тональности текста
и близость диалога к кластеру лояльных пользователей
(расстояние до центра кластера)
Также можно задавать маркетинговые вопросы напрямую


🕶Выберите форму зависимости и объясните ваш выбор
Опишите используемые метрики качества, а также использованные вами библиотеки, функции и методы анализа

Т.к. каждый диалог относится к определенному классу и разметки нет, это задача кластеризации
Для работы с текстовой кластеризацией подойдут методы word embedding из библиотеки
sklearn (CountVectorizer, TfidfTransformer) и gensim (word2vec), которые позволят преобразовать исходные данные в векторы для последующей кластеризации на нормализованных данных


🕶Определите границы значений рассчитанной величины лояльности У (если У изначально не категориальная переменная) для каждого уровня (high, low, average)
Устойчивы ли они?
Опиши способ подбора оптимальной границы

Y будет категориальной переменной, полученной в результате кластеризации, и важно, чтобы кластеры были максимально удалены друг от друга
Устойчивость кластеров можно оценить путем многократного применения алгоритма к данным: небольшие расхождения в результатах будут свидетельствовать о высокой устойчивости


🕶Опишите способ для упорядочивания выбранного вами набора признаков Х по степени важности для объяснения уровня лояльности У

Можно поочередно удалять признаки и отслеживать изменения в качестве классификации, что поможет выявить наиболее значимые из них

@zadachi_ds

BY Задачи DS - Собеседования, Соревнования, ШАД




Share with your friend now:
group-telegram.com/zadachi_ds/120

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon."
from jp


Telegram Задачи DS - Собеседования, Соревнования, ШАД
FROM American