Telegram Group & Telegram Channel
AlphaZero [2018] - история о плодотворной дружбе поиска и глубокого обучения

Обобщая, есть 2 поколения подходов в настольных играх:

1) Поиск по всем вариантам с оптимизациями
Шахматные алгоритмы, начиная с появления компьютеров, как минимум до Deep Blue [1997], работали на основе таких подходов. В глубине души они по эффективности похожи на полный перебор, но засчёт хитростей (вроде дебютной книги и эвристических оценок позиций в листьях дерева поиска) алгоритмам удаётся как-то работать.

2) Направленный поиск с помощью обучаемой функции полезности
Именно в этом и состояла революция AlphaGo (и её потомка AlphaZero). Оказалось, что обучаемая функция полезности действия в данной позиции позволяет перебирать радикально меньше вариантов ходов из каждой позиции. Она позволяет строить дерево поиска на больше ходов вперёд, потому что мы грамотно выбираем ходы при переборе.
Что интересно, обучается данная функция довольно просто - достаточно генерировать данные, садя алгоритм играть против себя же и своих прошлых итераций, и учить её предсказывать результат игры. В результате система легко обходит человека в шахматы и го.

Слабые точки AlphaZero понятны - требует много данных, обучается отдельно под одну игру. Но все революции за раз не совершить!

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/34
Create:
Last Update:

AlphaZero [2018] - история о плодотворной дружбе поиска и глубокого обучения

Обобщая, есть 2 поколения подходов в настольных играх:

1) Поиск по всем вариантам с оптимизациями
Шахматные алгоритмы, начиная с появления компьютеров, как минимум до Deep Blue [1997], работали на основе таких подходов. В глубине души они по эффективности похожи на полный перебор, но засчёт хитростей (вроде дебютной книги и эвристических оценок позиций в листьях дерева поиска) алгоритмам удаётся как-то работать.

2) Направленный поиск с помощью обучаемой функции полезности
Именно в этом и состояла революция AlphaGo (и её потомка AlphaZero). Оказалось, что обучаемая функция полезности действия в данной позиции позволяет перебирать радикально меньше вариантов ходов из каждой позиции. Она позволяет строить дерево поиска на больше ходов вперёд, потому что мы грамотно выбираем ходы при переборе.
Что интересно, обучается данная функция довольно просто - достаточно генерировать данные, садя алгоритм играть против себя же и своих прошлых итераций, и учить её предсказывать результат игры. В результате система легко обходит человека в шахматы и го.

Слабые точки AlphaZero понятны - требует много данных, обучается отдельно под одну игру. Но все революции за раз не совершить!

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/34

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. There was another possible development: Reuters also reported that Ukraine said that Belarus could soon join the invasion of Ukraine. However, the AFP, citing a Pentagon official, said the U.S. hasn’t yet seen evidence that Belarusian troops are in Ukraine. The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events."
from us


Telegram Knowledge Accumulator
FROM American