Telegram Group & Telegram Channel
AutoML-Zero [2020] - когда оракул помогает поиску.

Можно ли с нуля и без априорных знаний сгенерировать код нейронной сети? Оказывается, в целом можно.

Применяем эволюционный поиск программ:
1) Задаём базовую структуру программы: нам нужно обучить 3 куска кода - для инициализации, для шага обучения и применения. То, как они используется, заранее задано, там простой train-loop. То есть одна программа это реализация трёх функций.
2) Определяем набор операций, которые можно использовать - берём базовые математические операции над скалярами, матрицами и векторами. И добавляем возможность самому инициализировать новые такие объекты.
3) Поддерживаем "популяцию" из N программ
4) В процессе оптимизации берём программы и применяем к ним мутации (случайно добавляем/удаляем/изменяем команду или другие случайные изменения)
5) Оцениваем новые программы, прогоняя процесс обучения, оставляем удачные варианты в популяции.
6) Прогоняем триллион программ в рамках оптимизации и готово!

Важно заметить, что несмотря на случайную природу мутаций, AutoML-Zero ищет программу быстрее (экспоненциально), чем нашёл бы простой случайный поиск программ. Ключом тут является способность эволюционного алгоритма закреплять локальный успех.

Но каждый локальный успех по отдельности это миллиарды экспериментов - например, понадобилось 10^10 программ, чтобы собрать линейную модель. Поэтому такой подход имеет узкие рамки для использования.

Но зато всё это крайне весело.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/38
Create:
Last Update:

AutoML-Zero [2020] - когда оракул помогает поиску.

Можно ли с нуля и без априорных знаний сгенерировать код нейронной сети? Оказывается, в целом можно.

Применяем эволюционный поиск программ:
1) Задаём базовую структуру программы: нам нужно обучить 3 куска кода - для инициализации, для шага обучения и применения. То, как они используется, заранее задано, там простой train-loop. То есть одна программа это реализация трёх функций.
2) Определяем набор операций, которые можно использовать - берём базовые математические операции над скалярами, матрицами и векторами. И добавляем возможность самому инициализировать новые такие объекты.
3) Поддерживаем "популяцию" из N программ
4) В процессе оптимизации берём программы и применяем к ним мутации (случайно добавляем/удаляем/изменяем команду или другие случайные изменения)
5) Оцениваем новые программы, прогоняя процесс обучения, оставляем удачные варианты в популяции.
6) Прогоняем триллион программ в рамках оптимизации и готово!

Важно заметить, что несмотря на случайную природу мутаций, AutoML-Zero ищет программу быстрее (экспоненциально), чем нашёл бы простой случайный поиск программ. Ключом тут является способность эволюционного алгоритма закреплять локальный успех.

Но каждый локальный успех по отдельности это миллиарды экспериментов - например, понадобилось 10^10 программ, чтобы собрать линейную модель. Поэтому такой подход имеет узкие рамки для использования.

Но зато всё это крайне весело.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/38

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. For tech stocks, “the main thing is yields,” Essaye said. "He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said.
from us


Telegram Knowledge Accumulator
FROM American