group-telegram.com/antidigital/8003
Last Update:
С появлением в нашей жизни чат-ботов «искусственный интеллект» прочно закрепился в топах новостных сводок. В результате беглого чтения многие стали отождествлять ИИ с понятием «нейросеть». Это не совсем так.
Универсального определения искусственного интеллекта не существует: ученые пока не могут о нем договориться. Однако будет проще, если рассматривать ИИ как область компьютерных наук, которая изучает сложные интеллектуальные системы, решающие задачи, для которых обычно требуется человеческое мышление. И нейросеть тут – лишь один из инструментов исследователей, пусть и весьма популярный сегодня.
Искусственные нейроны, из которых состоят нейросети, математически и экспериментально исследуют более полувека. Важным этапом на этом пути стал перцептрон нейрофизиолога Фрэнка Розенблатта.
Перцептрон – это вдохновленная работой одного нейрона в мозге человека простая математическая модель, решающая задачу двоичной классификации. То есть нейросеть, которая определяет, относится предмет к той или иной категории или нет. Она состоит из элементов, принимающих сигналы, ассоциативных элементов и выходных элементов.
Представим, что перцептрон – это автоматический выключатель в спальне. Если в комнате достаточно темно, он «включается» (выдает 1), а если светло, остается «выключенным» (выдает 0).
Идею о том, что подобная модель напоминает работу нервной системы, впервые высказали в 1943 году Уоррен Мак-Каллок и Уолтер Питтс. Однако сам термин «перцептрон» (от английского «perception» — «восприятие») ввёл в оборот именно Розенблатт.
В 1957 году он представил технический отчёт, в котором описал результаты моделирования на компьютере Корнеллской лаборатории аэронавтики перцептрона, решающего задачу распознавания. Это позволило учёному сделать следующий шаг на пути к реализации проекта PARA (Perceiving and Recognition Automaton) — собрать описанную схему «в железе». К слову, сам Розенблатт продвигал перцептрон именно как устройство. В 1960 году ему удалось реализовать свою идею в форме первого в истории нейрокомпьютера под названием MARK I PERCEPTRON.
Несмотря на свою простоту, перцептрон оказался способен распознавать некоторые буквы английского алфавита и даже демонстрировал базовую способность к обобщению, но дальше, чем выучивание линейно простых шаблонов, дело не пошло. Вскоре интерес к перцептронам угас, пока исследователи не догадались использовать в архитектуре нейросетей несколько слоёв.
Перцептрон Розенблатта стал одним из первых алгоритмов, которые смогли обучаться на своих ошибках. Это предвосхитило многие современные методы обучения и построения нейронных сетей. Например, обучение с помощью градиентного спуска или полносвязные нейронные сети, которые являются частью более крупных моделей. Среди них и архитектура «Трансформер», которая произвела революцию в области ИИ и позволила совершить прорыв в развитии больших языковых моделей.
Благодаря использованию расширенных функций активации, методов регуляризации, алгоритмов оптимизации и новых архитектур, современные глубокие нейронные сети могут изучать очень сложные паттерны и взаимосвязи в данных, а вы можете попросить ChatGPT объяснить, что все это значит. Но лучше спросите ученых из Института искусственного интеллекта AIRI, которые подготовили этот текст специально для @antidigital.
BY Нецифровая экономика

Share with your friend now:
group-telegram.com/antidigital/8003