Telegram Group & Telegram Channel
OneRec: Unifying Retrieve and Rank with Generative Recommender and Preference Alignment [2025]

У рекомендательных инженеров есть мечта - каким-то образом обучить одну модель, которая будет напрямую выбирать айтемы из огромной базы, без всяких multi-stage ranking костылей. Каким-то образом она должна совмещать в себе скорость методов кандидатогенерации и качество моделей ранжирования.

Одним из ответов на данный вызов называют генеративные рекомендации. Я уже писал про статью о Generative Retrieval (TIGER) от гугла. Суть этого подхода заключается в обучении семантических ID-шников для айтемов, делающих осмысленным генерацию айтема декодерным трансформером.

Здесь подход похожий, но авторы утверждают, что запустили такую систему в прод вместо всей системы ранжирования и получили профит. От TIGER система достаточно сильно отличается, давайте посмотрим внимательнее.

Начнём с того, что авторы не используют никакие RQ-VAE для генерации семантических ID. Вместо этого на датасете из эмбеддингов айтемов N раз применяют "Balanced K-means" - вариацию алгоритма, в которой форсируется одинаковый размер кластеров. После каждого из N применений из векторов вычитают центроиды - получается почти как в RQ-VAE, но по-другому.

Теперь к обучению трансформерного декодера. Собирается датасет из "хороших пользовательских сессий" - последовательностей событий просмотра видео, которые удовлетворяют пачке критериев - кол-во видео, общее кол-во секунд, кол-во положительных взаимодействий.

Каждое видео заменяется на последовательность его семантических ID + разделитель. На этих данных мы самым обычным образом обучаем декодер, максимизируя вероятность выдачи "хорошей сессии". Один внимательный инженер заметил, что это по сути одна итерация Cross Entropy Method, со всеми вытекающими - например, тут отсутствует оценка индивидуальных действий.

Но это только предобучение. После этого применяют "DPO с дополнительной reward model", но это не RLHF, а свой велосипед.

Сначала RM обучают по сессии предсказывать награду - наличие лайка или суммарный watchtime. Далее генератор просят выдать N последовательностей, которые RM ранжирует и выбирает лучшую и худшую - эти пары и будут использоваться для обучения DPO.

Получается, что авторы, лишь бы не использовать RL, игнорируют наличие у них Reward Model и используют метод, разработанный для того, чтобы не обучать Reward Model. Как опытный RL-щик, одобряю.

Онлайн-результаты такие: 0.1B-декодер даёт +0.57%, 1B-декодер даёт +1.21% и 1B + их DPO даёт +1.68%. Очень интересный результат, думаю, мы тоже будем копать в какую-то такую сторону. Чем меньше у системы кусков и моделей, тем лучше с практической точки зрения.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/271
Create:
Last Update:

OneRec: Unifying Retrieve and Rank with Generative Recommender and Preference Alignment [2025]

У рекомендательных инженеров есть мечта - каким-то образом обучить одну модель, которая будет напрямую выбирать айтемы из огромной базы, без всяких multi-stage ranking костылей. Каким-то образом она должна совмещать в себе скорость методов кандидатогенерации и качество моделей ранжирования.

Одним из ответов на данный вызов называют генеративные рекомендации. Я уже писал про статью о Generative Retrieval (TIGER) от гугла. Суть этого подхода заключается в обучении семантических ID-шников для айтемов, делающих осмысленным генерацию айтема декодерным трансформером.

Здесь подход похожий, но авторы утверждают, что запустили такую систему в прод вместо всей системы ранжирования и получили профит. От TIGER система достаточно сильно отличается, давайте посмотрим внимательнее.

Начнём с того, что авторы не используют никакие RQ-VAE для генерации семантических ID. Вместо этого на датасете из эмбеддингов айтемов N раз применяют "Balanced K-means" - вариацию алгоритма, в которой форсируется одинаковый размер кластеров. После каждого из N применений из векторов вычитают центроиды - получается почти как в RQ-VAE, но по-другому.

Теперь к обучению трансформерного декодера. Собирается датасет из "хороших пользовательских сессий" - последовательностей событий просмотра видео, которые удовлетворяют пачке критериев - кол-во видео, общее кол-во секунд, кол-во положительных взаимодействий.

Каждое видео заменяется на последовательность его семантических ID + разделитель. На этих данных мы самым обычным образом обучаем декодер, максимизируя вероятность выдачи "хорошей сессии". Один внимательный инженер заметил, что это по сути одна итерация Cross Entropy Method, со всеми вытекающими - например, тут отсутствует оценка индивидуальных действий.

Но это только предобучение. После этого применяют "DPO с дополнительной reward model", но это не RLHF, а свой велосипед.

Сначала RM обучают по сессии предсказывать награду - наличие лайка или суммарный watchtime. Далее генератор просят выдать N последовательностей, которые RM ранжирует и выбирает лучшую и худшую - эти пары и будут использоваться для обучения DPO.

Получается, что авторы, лишь бы не использовать RL, игнорируют наличие у них Reward Model и используют метод, разработанный для того, чтобы не обучать Reward Model. Как опытный RL-щик, одобряю.

Онлайн-результаты такие: 0.1B-декодер даёт +0.57%, 1B-декодер даёт +1.21% и 1B + их DPO даёт +1.68%. Очень интересный результат, думаю, мы тоже будем копать в какую-то такую сторону. Чем меньше у системы кусков и моделей, тем лучше с практической точки зрения.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/271

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai. I want a secure messaging app, should I use Telegram? 'Wild West'
from kr


Telegram Knowledge Accumulator
FROM American