(в целом, для этой цели я и заводил канал — чтобы не орать в пустоту)
ребята из sakana ai выпустили революционную работу. они искали разные формы жизни в автономных играх-симуляциях типа конвеевской Игры Жизнь, и других, более сложных, например, Lenia или Particle Life. это такие игры в которых стартовая позиция пикселей "эволюционирует" через следование очень простым правилам в духе "если у пикселя меньше двух соседей, пиксель умирает. а если 2 или 3 - продолжает жить"
давно стоявший вопрос — какие самые сложные формы организации пикселей возможны в таких примитивных симуляциях, если пройдет достаточно много времени эволюции. раньше ответить на него было сложно, потому что при всей простоте они генерируют очень много данных, которые сложно было процедить вручную. к тому же самое интересное происходит на очень больших временах. и вот тут как раз и помог ИИ — они искал эти сложные формы автоматически с помощью трансформер-моделей
итог — нашли artificial life forms! в симуляции Lenia обнаружили группы пикселей, похожие на вирусы, скопления нейронов и пепперони-пиццу 🙃 и сразу в нескольких симуляциях нашли нечто похожее на биологические клетки, бактерии и даже гусениц. а мы с каждой такой находкой все дальше от бога ...
еще раз ссылка. ставьте 🗿 если ничего не поняли и 🤯 если как и я шокированы. соберется 50 реакций — сделаю подробный разбор 👺
(в целом, для этой цели я и заводил канал — чтобы не орать в пустоту)
ребята из sakana ai выпустили революционную работу. они искали разные формы жизни в автономных играх-симуляциях типа конвеевской Игры Жизнь, и других, более сложных, например, Lenia или Particle Life. это такие игры в которых стартовая позиция пикселей "эволюционирует" через следование очень простым правилам в духе "если у пикселя меньше двух соседей, пиксель умирает. а если 2 или 3 - продолжает жить"
давно стоявший вопрос — какие самые сложные формы организации пикселей возможны в таких примитивных симуляциях, если пройдет достаточно много времени эволюции. раньше ответить на него было сложно, потому что при всей простоте они генерируют очень много данных, которые сложно было процедить вручную. к тому же самое интересное происходит на очень больших временах. и вот тут как раз и помог ИИ — они искал эти сложные формы автоматически с помощью трансформер-моделей
итог — нашли artificial life forms! в симуляции Lenia обнаружили группы пикселей, похожие на вирусы, скопления нейронов и пепперони-пиццу 🙃 и сразу в нескольких симуляциях нашли нечто похожее на биологические клетки, бактерии и даже гусениц. а мы с каждой такой находкой все дальше от бога ...
еще раз ссылка. ставьте 🗿 если ничего не поняли и 🤯 если как и я шокированы. соберется 50 реакций — сделаю подробный разбор 👺
If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy."
from kr