Frontier Models are Capable of In-context Scheming Alexander Meinke et al., Apollo Research, 2024 Статья, блог
Рабочие дни подошли к концу, поэтому сегодня статья более развлекательного характера. Если вам недавно попадались статьи про то, что «ИИ пытался сбежать, а потом врал, что не пытался», то это очень краткое (и слегка кликбейтный) содержание параграфа о поведении o1 в System card, основанного на исследовании, которое провели Apollo Research, независимая AI safety-лаборатория.
Предпосылки таковы. В safety-дискурсе есть такое понятие, как scheming – когда модель вместо того, чтобы делать то, что просит пользователь, скрытно преследует свои цели. Это может проявляться по-разному. Во-первых, модели могут делать то, что велит системная затравка в обход просьб пользователя, при этом делая вид, что выполняет пользовательскую инструкцию (in-context scheming). Во-вторых, они могут преследовать цели, которые получили в процессе обучения. Совпадение «ценностей», полученных из обучения (в частности, элайнмента) и системных инструкций увеличивает вероятность, что модель будет строить тайные планы.
Frontier Models are Capable of In-context Scheming Alexander Meinke et al., Apollo Research, 2024 Статья, блог
Рабочие дни подошли к концу, поэтому сегодня статья более развлекательного характера. Если вам недавно попадались статьи про то, что «ИИ пытался сбежать, а потом врал, что не пытался», то это очень краткое (и слегка кликбейтный) содержание параграфа о поведении o1 в System card, основанного на исследовании, которое провели Apollo Research, независимая AI safety-лаборатория.
Предпосылки таковы. В safety-дискурсе есть такое понятие, как scheming – когда модель вместо того, чтобы делать то, что просит пользователь, скрытно преследует свои цели. Это может проявляться по-разному. Во-первых, модели могут делать то, что велит системная затравка в обход просьб пользователя, при этом делая вид, что выполняет пользовательскую инструкцию (in-context scheming). Во-вторых, они могут преследовать цели, которые получили в процессе обучения. Совпадение «ценностей», полученных из обучения (в частности, элайнмента) и системных инструкций увеличивает вероятность, что модель будет строить тайные планы.
These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred."
from kr