Telegram Group & Telegram Channel
📘 Learning Deep Representations of Data Distributions — новая бесплатная книга от исследователей UC Berkeley (Sam Buchanan, Druv Pai, Peng Wang, Yi Ma).

Главная идея книги - показать, почему и как глубокие нейросети учатся извлекать сжатые, информативные представления сложных данных, и что у них внутри:

💡В книге вы найдите:

🟠простое объяснение фундаментальных принципов архитектур нейросетей через оптимизацию и теорию информации.
🟠как модели формируют инвариантные и устойчивые представления
🟠связь с PCA, автоэнкодерами и дифференцируемыми отображениями — то есть, как нейросети по сути обобщают классические методы сжатия данных и учатся находить их оптимальное представление
🟠взгляд на обучение через энергию, энтропию и структуру данных
🟠свежие идеи для понимания LLM и генеративных моделей

📖 Читать онлайн: ma-lab-berkeley.github.io/deep-representation-learning-book

🖥 Github: https://github.com/Ma-Lab-Berkeley/deep-representation-learning-book

@ai_machinelearning_big_data

#book #deeplearning #representationlearning #ucberkeley #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/machinelearnindigest/1320
Create:
Last Update:

📘 Learning Deep Representations of Data Distributions — новая бесплатная книга от исследователей UC Berkeley (Sam Buchanan, Druv Pai, Peng Wang, Yi Ma).

Главная идея книги - показать, почему и как глубокие нейросети учатся извлекать сжатые, информативные представления сложных данных, и что у них внутри:

💡В книге вы найдите:

🟠простое объяснение фундаментальных принципов архитектур нейросетей через оптимизацию и теорию информации.
🟠как модели формируют инвариантные и устойчивые представления
🟠связь с PCA, автоэнкодерами и дифференцируемыми отображениями — то есть, как нейросети по сути обобщают классические методы сжатия данных и учатся находить их оптимальное представление
🟠взгляд на обучение через энергию, энтропию и структуру данных
🟠свежие идеи для понимания LLM и генеративных моделей

📖 Читать онлайн: ma-lab-berkeley.github.io/deep-representation-learning-book

🖥 Github: https://github.com/Ma-Lab-Berkeley/deep-representation-learning-book

@ai_machinelearning_big_data

#book #deeplearning #representationlearning #ucberkeley #machinelearning

BY Машинное обучение digest










Share with your friend now:
group-telegram.com/machinelearnindigest/1320

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts.
from kr


Telegram Машинное обучение digest
FROM American