Telegram Group & Telegram Channel
#матлог #спецсеминар #не_мехмат #МФТИ

Уважаемые коллеги, приглашаем вас на логический семинар лаборатории им. Манина Высшей школы современной математики МФТИ (ВШМ).
Семинар пройдёт в среду 23 апреля в 14:00.
В рамках этого семинара пройдет предзащита докторской диссертации Рыбакова М.Н.

Место проведения: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Чтобы пройти на семинар, если у вас нет пропуска в МФТИ, достаточно сказать, что вы идёте на семинар ВШМ и предъявить паспорт.

К семинару можно подключиться дистанционно, для получения ссылки пишите на почту [email protected].

Докладчик: Михаил Николаевич Рыбаков (ВШМ МФТИ)

Название: Моделирование логических систем средствами их фрагментов (предзащита докторской диссертации)

Аннотация:
Проведённое исследование связано с выразительностью языков, логик и теорий, и прежде всего с алгоритмической выразительностью (в том числе вычислительной сложностью) определённых их фрагментов.

Многие естественные логические системы либо алгоритмически неразрешимы (причём иногда сильно неразрешимы), либо, будучи разрешимыми, имеют высокую сложность проблемы разрешения. Известно, что определённые ограничения, накладываемые на средства языка, аксиоматику или используемую семантику, приводят к изменению алгоритмической сложности тех или иных задач. В то же время иногда это не так: например, в неклассических логиках как неразрешимость, так и высокая сложность проблемы разрешения в случае разрешимости могут получаться при очень сильных ограничениях на средства языка.

Представляется актуальным не только нахождение границ, в рамках которых подобные проблемы оказываются алгоритмически простыми или наоборот остаются алгоритмически сложными, но и разработка общих методов, позволяющих получать оценки алгоритмической сложности фрагментов не только отдельных логических систем, а всех систем тех или иных бесконечных классов. Вместе с методами хотелось бы иметь общие признаки или критерии, позволяющие относительно просто делать вывод об алгоритмической сложности тех или иных фрагментов интересующей нас системы или хотя бы о потенциальной возможности или невозможности применения этих методов.

Основная цель работы состоит в том, чтобы развить общие методы моделирования алгоритмически сложных проблем внутри логик и теорий, используя минимальные средства языка. В частности, в работе предложены методы моделирования полных языков средствами их очень бедных фрагментов. К средствам языка, которые минимизируются, в первую очередь относятся следующие: число пропозициональных переменных в пропозициональных языках, число предметных переменных, а также число и валентность предикатных букв в языках первого порядка. Рассматриваются и некоторые ограничения на использование логических связок и кванторов.

В докладе будет дан обзор результатов, которые были получены автором в этом направлении. Будут коротко описаны методы их получения, а также возможные дальнейшие продвижения.

ВК



group-telegram.com/msu_mathlog/215
Create:
Last Update:

#матлог #спецсеминар #не_мехмат #МФТИ

Уважаемые коллеги, приглашаем вас на логический семинар лаборатории им. Манина Высшей школы современной математики МФТИ (ВШМ).
Семинар пройдёт в среду 23 апреля в 14:00.
В рамках этого семинара пройдет предзащита докторской диссертации Рыбакова М.Н.

Место проведения: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Чтобы пройти на семинар, если у вас нет пропуска в МФТИ, достаточно сказать, что вы идёте на семинар ВШМ и предъявить паспорт.

К семинару можно подключиться дистанционно, для получения ссылки пишите на почту [email protected].

Докладчик: Михаил Николаевич Рыбаков (ВШМ МФТИ)

Название: Моделирование логических систем средствами их фрагментов (предзащита докторской диссертации)

Аннотация:
Проведённое исследование связано с выразительностью языков, логик и теорий, и прежде всего с алгоритмической выразительностью (в том числе вычислительной сложностью) определённых их фрагментов.

Многие естественные логические системы либо алгоритмически неразрешимы (причём иногда сильно неразрешимы), либо, будучи разрешимыми, имеют высокую сложность проблемы разрешения. Известно, что определённые ограничения, накладываемые на средства языка, аксиоматику или используемую семантику, приводят к изменению алгоритмической сложности тех или иных задач. В то же время иногда это не так: например, в неклассических логиках как неразрешимость, так и высокая сложность проблемы разрешения в случае разрешимости могут получаться при очень сильных ограничениях на средства языка.

Представляется актуальным не только нахождение границ, в рамках которых подобные проблемы оказываются алгоритмически простыми или наоборот остаются алгоритмически сложными, но и разработка общих методов, позволяющих получать оценки алгоритмической сложности фрагментов не только отдельных логических систем, а всех систем тех или иных бесконечных классов. Вместе с методами хотелось бы иметь общие признаки или критерии, позволяющие относительно просто делать вывод об алгоритмической сложности тех или иных фрагментов интересующей нас системы или хотя бы о потенциальной возможности или невозможности применения этих методов.

Основная цель работы состоит в том, чтобы развить общие методы моделирования алгоритмически сложных проблем внутри логик и теорий, используя минимальные средства языка. В частности, в работе предложены методы моделирования полных языков средствами их очень бедных фрагментов. К средствам языка, которые минимизируются, в первую очередь относятся следующие: число пропозициональных переменных в пропозициональных языках, число предметных переменных, а также число и валентность предикатных букв в языках первого порядка. Рассматриваются и некоторые ограничения на использование логических связок и кванторов.

В докладе будет дан обзор результатов, которые были получены автором в этом направлении. Будут коротко описаны методы их получения, а также возможные дальнейшие продвижения.

ВК

BY Кафедра математической логики и теории алгоритмов мехмата МГУ


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/msu_mathlog/215

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. Telegram boasts 500 million users, who share information individually and in groups in relative security. But Telegram's use as a one-way broadcast channel — which followers can join but not reply to — means content from inauthentic accounts can easily reach large, captive and eager audiences.
from kr


Telegram Кафедра математической логики и теории алгоритмов мехмата МГУ
FROM American