Telegram Group & Telegram Channel
Review | Smart stimulation patterns for visual prostheses

๐Ÿ”˜Towards biologically plausible phosphene simulation

tl;dr: Differentiable PyTorch simulator translating V1 stimulation to phosphene perception for end-to-end optimization
- Fully differentiable pipeline allowing optimization of all stimulation parameters via backpropagation
- Based on many experimental data.
- Bridges gap between electrode-level stimulation and resulting visual perception

link: https://doi.org/10.7554/eLife.85812

๐Ÿ”˜Human-in-the-Loop Optimization for Visual Prostheses

tl;dr: Neural encoder + Preference bayesian optimization.
- Train deep stimulus encoder (DSE): transform images -> stimulation.
- Add "patient params" 13 values as additional input into DSE.
- Uses Preferential Bayesian Optimization with GP prior to update only "patients" params using only binary comparisons
- Achieves 80% preference alignment after only 150 comparisons despite 20% simulated noise in human feedback

link: https://arxiv.org/abs/2306.13104

๐Ÿ”˜MiSO: Optimizing brain stimulation for target neural states

tl;dr: ML system that predicts and optimizes multi-electrode stimulation to achieve specific neural activity patterns
- Utah array on monkey PFC
- One-two electrode stimulation with fixed frequency/amplitude
- Collect paired (stim, signals) data across multiple sessions
- Extract latent features using Factor Analysis (FA)
- Align latent spaces across sessions using Procrustes method
- Train CNN to predict latent states from stim patterns
- Apply epsilon-greedy optimizer to find optimal stimulation in closed-loop

link: https://www.nature.com/articles/s41467-023-42338-8

๐Ÿ”˜Precise control with dynamically optimized electrical stimulation

tl;dr: Temporal dithering algorithm exploits neural integration window to enhance visual prosthesis performance by 40%
- Uses triphasic pulses at 0.1ms intervals optimized within neural integration time window (10-20ms)
- Implements spatial multiplexing with 200ฮผm exclusion zones to prevent electrode interference
- Achieves 87% specificity in targeting ON vs OFF retinal pathways, solving a fundamental limitation of current implants

link: https://doi.org/10.7554/eLife.83424

my thoughts
The field is finally moving beyond simplistic zap-and-see approaches. These papers tackle predicting perception, minimizing patient burden, targeting neural states, and improving power efficiency. What excites me most is how these methods could work together - imagine MiSO's targeting combined with human feedback and efficient stimulation patterns. The missing piece? Understanding how neural activity translates to actual perception. Current approaches optimize for either brain patterns OR what people see, not both. I think the next breakthrough will come from models that bridge this gap, perhaps using contrastive learning to connect brain recordings with what people actually report seeing.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/neural_cell/271
Create:
Last Update:

Review | Smart stimulation patterns for visual prostheses

๐Ÿ”˜Towards biologically plausible phosphene simulation

tl;dr: Differentiable PyTorch simulator translating V1 stimulation to phosphene perception for end-to-end optimization
- Fully differentiable pipeline allowing optimization of all stimulation parameters via backpropagation
- Based on many experimental data.
- Bridges gap between electrode-level stimulation and resulting visual perception

link: https://doi.org/10.7554/eLife.85812

๐Ÿ”˜Human-in-the-Loop Optimization for Visual Prostheses

tl;dr: Neural encoder + Preference bayesian optimization.
- Train deep stimulus encoder (DSE): transform images -> stimulation.
- Add "patient params" 13 values as additional input into DSE.
- Uses Preferential Bayesian Optimization with GP prior to update only "patients" params using only binary comparisons
- Achieves 80% preference alignment after only 150 comparisons despite 20% simulated noise in human feedback

link: https://arxiv.org/abs/2306.13104

๐Ÿ”˜MiSO: Optimizing brain stimulation for target neural states

tl;dr: ML system that predicts and optimizes multi-electrode stimulation to achieve specific neural activity patterns
- Utah array on monkey PFC
- One-two electrode stimulation with fixed frequency/amplitude
- Collect paired (stim, signals) data across multiple sessions
- Extract latent features using Factor Analysis (FA)
- Align latent spaces across sessions using Procrustes method
- Train CNN to predict latent states from stim patterns
- Apply epsilon-greedy optimizer to find optimal stimulation in closed-loop

link: https://www.nature.com/articles/s41467-023-42338-8

๐Ÿ”˜Precise control with dynamically optimized electrical stimulation

tl;dr: Temporal dithering algorithm exploits neural integration window to enhance visual prosthesis performance by 40%
- Uses triphasic pulses at 0.1ms intervals optimized within neural integration time window (10-20ms)
- Implements spatial multiplexing with 200ฮผm exclusion zones to prevent electrode interference
- Achieves 87% specificity in targeting ON vs OFF retinal pathways, solving a fundamental limitation of current implants

link: https://doi.org/10.7554/eLife.83424

my thoughts
The field is finally moving beyond simplistic zap-and-see approaches. These papers tackle predicting perception, minimizing patient burden, targeting neural states, and improving power efficiency. What excites me most is how these methods could work together - imagine MiSO's targeting combined with human feedback and efficient stimulation patterns. The missing piece? Understanding how neural activity translates to actual perception. Current approaches optimize for either brain patterns OR what people see, not both. I think the next breakthrough will come from models that bridge this gap, perhaps using contrastive learning to connect brain recordings with what people actually report seeing.

BY the last neural cell




Share with your friend now:
group-telegram.com/neural_cell/271

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Emerson Brooking, a disinformation expert at the Atlantic Council's Digital Forensic Research Lab, said: "Back in the Wild West period of content moderation, like 2014 or 2015, maybe they could have gotten away with it, but it stands in marked contrast with how other companies run themselves today." "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30.
from kr


Telegram the last neural cell
FROM American