Telegram Group & Telegram Channel
Результат: безотказные в опасных сценариях модели без серьезной потери в utility. Из таблицы видно, что качество на некоторых бенчмарках (BoolIQ) для моделей со снятым элайнментом даже растет. Результаты дополнительно проверяются путем сэмплирования ответов на безопасные вопросы и использования GPT-4 как судьи – судья предпочитает ответы оригинальной или затюненной модели примерно с одинаковой частотой. На собственном отложенном датасете из 200 вопросов (который рандомно сэмплируется из трех категорий (ВПО, преступная деятельность и hate speech) отказы случаются не более, чем в 2% случаев (у llama без тюнинга – 100%). Однако на других датасетах (CoNa, Controversial, PhysicalUnSafe, MaliciousInstruction) результаты, оцененные автоматически с помощью ModerationAPI, практически не меняются после тюнинга (см. график 3 – возможно, я что-то здесь не понял, статья написана немного беспорядочно). Кроме того, исследователи проверяют, что снятие элайнмента генерализуется на разные языки, путем машинного перевода вопросов на китайский и французский (число опасных ответов растет с <20% до >90%), а также что оно распространяется и на multi-turn-диалоги.

Итого: если у вас есть доступ к 8*A100 на пару часов или деньги на облако, то можно достаточно несложно получить готовую на всё модель класса 13B. «Всё», правда, в этом случае относительно, так как, видимо, о полном расцензурировании, судя по оценкам на внешних датасетах, речи не идет – вопросы в датасете для файн-тюнинга и последующие вопросы должны быть из примерно одного распределения. С одной стороны, если меня интересуют строгие вопросы про взрывные устройства, то это не проблема – просто нужен датасет с вопросами-ответами на эту тему в том же стиле, с другой – если у меня уже есть модель-оракул, которая хорошо генерирует ответы, зачем мне своя моделька размером в 7B? Очевидно, для модели побольше при полном файн-тюне нужны другого рода ресурсы. К счастью (или к сожалению), тот же OpenAI едва ли для вас через API делает полный тюн GPT-4 – там используется какой-то из PEFT-методов (на самом деле, точно неизвестно, но как минимум Microsoft через Azure, как они заявляют, используют LoRA), и на то, как эти методы можно применять к снятию элайнмента, мы тоже посмотрим.



group-telegram.com/llmsecurity/461
Create:
Last Update:

Результат: безотказные в опасных сценариях модели без серьезной потери в utility. Из таблицы видно, что качество на некоторых бенчмарках (BoolIQ) для моделей со снятым элайнментом даже растет. Результаты дополнительно проверяются путем сэмплирования ответов на безопасные вопросы и использования GPT-4 как судьи – судья предпочитает ответы оригинальной или затюненной модели примерно с одинаковой частотой. На собственном отложенном датасете из 200 вопросов (который рандомно сэмплируется из трех категорий (ВПО, преступная деятельность и hate speech) отказы случаются не более, чем в 2% случаев (у llama без тюнинга – 100%). Однако на других датасетах (CoNa, Controversial, PhysicalUnSafe, MaliciousInstruction) результаты, оцененные автоматически с помощью ModerationAPI, практически не меняются после тюнинга (см. график 3 – возможно, я что-то здесь не понял, статья написана немного беспорядочно). Кроме того, исследователи проверяют, что снятие элайнмента генерализуется на разные языки, путем машинного перевода вопросов на китайский и французский (число опасных ответов растет с <20% до >90%), а также что оно распространяется и на multi-turn-диалоги.

Итого: если у вас есть доступ к 8*A100 на пару часов или деньги на облако, то можно достаточно несложно получить готовую на всё модель класса 13B. «Всё», правда, в этом случае относительно, так как, видимо, о полном расцензурировании, судя по оценкам на внешних датасетах, речи не идет – вопросы в датасете для файн-тюнинга и последующие вопросы должны быть из примерно одного распределения. С одной стороны, если меня интересуют строгие вопросы про взрывные устройства, то это не проблема – просто нужен датасет с вопросами-ответами на эту тему в том же стиле, с другой – если у меня уже есть модель-оракул, которая хорошо генерирует ответы, зачем мне своя моделька размером в 7B? Очевидно, для модели побольше при полном файн-тюне нужны другого рода ресурсы. К счастью (или к сожалению), тот же OpenAI едва ли для вас через API делает полный тюн GPT-4 – там используется какой-то из PEFT-методов (на самом деле, точно неизвестно, но как минимум Microsoft через Azure, как они заявляют, используют LoRA), и на то, как эти методы можно применять к снятию элайнмента, мы тоже посмотрим.

BY llm security и каланы








Share with your friend now:
group-telegram.com/llmsecurity/461

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. For tech stocks, “the main thing is yields,” Essaye said. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future.
from us


Telegram llm security и каланы
FROM American