Telegram Group & Telegram Channel
🧠 Байесовская очистка данных от дневного bias с помощью нелинейной регрессии

Снова измерения температуры 📈 — и снова проблема: каждый день датчик даёт случайное смещение (bias). Нам нужно не просто его найти, а сделать это более надёжно — с учётом неопределённости.

🔁 Уточнённые цели

1. Оценить дневной bias через байесовскую регрессию
2. Использовать нелинейный тренд вместо скользящего среднего
3. Построить интервалы доверия для оценённой температуры
4. Визуализировать, насколько хорошо работает очистка

📦 Шаг 1. Генерация данных (как раньше)


import pandas as pd
import numpy as np

np.random.seed(42)
days = pd.date_range("2023-01-01", periods=10, freq="D")
true_temp = np.sin(np.linspace(0, 3 * np.pi, 240)) * 10 + 20
bias_per_day = np.random.uniform(-2, 2, size=len(days))

df = pd.DataFrame({
"datetime": pd.date_range("2023-01-01", periods=240, freq="H"),
})
df["day"] = df["datetime"].dt.date
df["true_temp"] = true_temp
df["bias"] = df["day"].map(dict(zip(days.date, bias_per_day)))
df["measured_temp"] = df["true_temp"] + df["bias"] + np.random.normal(0, 0.5, size=240)

📐 Шаг 2. Построим нелинейную модель тренда (например, полиномиальную регрессию)


from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

# Модель полиномиальной регрессии степени 6
X_time = np.arange(len(df)).reshape(-1, 1)
y = df["measured_temp"].values

model = make_pipeline(PolynomialFeatures(degree=6), Ridge(alpha=1.0))
model.fit(X_time, y)

df["trend_poly"] = model.predict(X_time)
df["residual"] = df["measured_temp"] - df["trend_poly"]


🧮 Шаг 3. Байесовская оценка bias (через среднее и стандартную ошибку)


bias_stats = df.groupby("day")["residual"].agg(["mean", "std", "count"])
bias_stats["stderr"] = bias_stats["std"] / np.sqrt(bias_stats["count"])
df["bias_bayes"] = df["day"].map(bias_stats["mean"])
df["bias_stderr"] = df["day"].map(bias_stats["stderr"])

# Восстановим очищенную температуру
df["restored_bayes"] = df["measured_temp"] - df["bias_bayes"]


📊 Шаг 4. Оценка качества и визуализация


from sklearn.metrics import mean_squared_error
rmse = mean_squared_error(df["true_temp"], df["restored_bayes"], squared=False)
print(f"📉 RMSE (после байесовской очистки): {rmse:.3f}")


📈 Визуализация с доверительными интервалами


import matplotlib.pyplot as plt

for day in df["day"].unique():
day_data = df[df["day"] == day]
stderr = day_data["bias_stderr"].iloc[0]

plt.fill_between(day_data.index,
day_data["restored_bayes"] - stderr,
day_data["restored_bayes"] + stderr,
alpha=0.2, label=str(day) if day == df["day"].unique()[0] else "")

plt.plot(df["true_temp"], label="True Temp", lw=1.5)
plt.plot(df["restored_bayes"], label="Restored Temp (Bayes)", lw=1)
plt.legend()
plt.title("Восстановление температуры с доверительными интервалами")
plt.xlabel("Time")
plt.ylabel("°C")
plt.grid(True)
plt.show()

Вывод

✔️ Нелинейная регрессия даёт лучшее приближение тренда, чем скользящее среднее
✔️ Байесовская оценка даёт не только среднюю оценку bias, но и доверительные интервалы
✔️ Модель учитывает неопределённость и шум — ближе к реальной инженерной задаче
✔️ RMSE почти сравнивается с дисперсией шума → bias эффективно устраняется
👍16🔥107😢2



group-telegram.com/machinelearning_interview/1815
Create:
Last Update:

🧠 Байесовская очистка данных от дневного bias с помощью нелинейной регрессии

Снова измерения температуры 📈 — и снова проблема: каждый день датчик даёт случайное смещение (bias). Нам нужно не просто его найти, а сделать это более надёжно — с учётом неопределённости.

🔁 Уточнённые цели

1. Оценить дневной bias через байесовскую регрессию
2. Использовать нелинейный тренд вместо скользящего среднего
3. Построить интервалы доверия для оценённой температуры
4. Визуализировать, насколько хорошо работает очистка

📦 Шаг 1. Генерация данных (как раньше)


import pandas as pd
import numpy as np

np.random.seed(42)
days = pd.date_range("2023-01-01", periods=10, freq="D")
true_temp = np.sin(np.linspace(0, 3 * np.pi, 240)) * 10 + 20
bias_per_day = np.random.uniform(-2, 2, size=len(days))

df = pd.DataFrame({
"datetime": pd.date_range("2023-01-01", periods=240, freq="H"),
})
df["day"] = df["datetime"].dt.date
df["true_temp"] = true_temp
df["bias"] = df["day"].map(dict(zip(days.date, bias_per_day)))
df["measured_temp"] = df["true_temp"] + df["bias"] + np.random.normal(0, 0.5, size=240)

📐 Шаг 2. Построим нелинейную модель тренда (например, полиномиальную регрессию)


from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

# Модель полиномиальной регрессии степени 6
X_time = np.arange(len(df)).reshape(-1, 1)
y = df["measured_temp"].values

model = make_pipeline(PolynomialFeatures(degree=6), Ridge(alpha=1.0))
model.fit(X_time, y)

df["trend_poly"] = model.predict(X_time)
df["residual"] = df["measured_temp"] - df["trend_poly"]


🧮 Шаг 3. Байесовская оценка bias (через среднее и стандартную ошибку)


bias_stats = df.groupby("day")["residual"].agg(["mean", "std", "count"])
bias_stats["stderr"] = bias_stats["std"] / np.sqrt(bias_stats["count"])
df["bias_bayes"] = df["day"].map(bias_stats["mean"])
df["bias_stderr"] = df["day"].map(bias_stats["stderr"])

# Восстановим очищенную температуру
df["restored_bayes"] = df["measured_temp"] - df["bias_bayes"]


📊 Шаг 4. Оценка качества и визуализация


from sklearn.metrics import mean_squared_error
rmse = mean_squared_error(df["true_temp"], df["restored_bayes"], squared=False)
print(f"📉 RMSE (после байесовской очистки): {rmse:.3f}")


📈 Визуализация с доверительными интервалами


import matplotlib.pyplot as plt

for day in df["day"].unique():
day_data = df[df["day"] == day]
stderr = day_data["bias_stderr"].iloc[0]

plt.fill_between(day_data.index,
day_data["restored_bayes"] - stderr,
day_data["restored_bayes"] + stderr,
alpha=0.2, label=str(day) if day == df["day"].unique()[0] else "")

plt.plot(df["true_temp"], label="True Temp", lw=1.5)
plt.plot(df["restored_bayes"], label="Restored Temp (Bayes)", lw=1)
plt.legend()
plt.title("Восстановление температуры с доверительными интервалами")
plt.xlabel("Time")
plt.ylabel("°C")
plt.grid(True)
plt.show()

Вывод

✔️ Нелинейная регрессия даёт лучшее приближение тренда, чем скользящее среднее
✔️ Байесовская оценка даёт не только среднюю оценку bias, но и доверительные интервалы
✔️ Модель учитывает неопределённость и шум — ближе к реальной инженерной задаче
✔️ RMSE почти сравнивается с дисперсией шума → bias эффективно устраняется

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/machinelearning_interview/1815

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries.
from us


Telegram Machine learning Interview
FROM Russia