Telegram Group & Telegram Channel
(продолжение, начало выше)

4.
итак, корни кубического уравнения выражаются через лямбды, и в нашем случае λ₁³=-7²(1+3ω)²

теорема Кронекера-Вебера (whatever it means) гарантирует, что λ₁ можно выразить через корни из единицы, но как конкретно это сделать?

выше обсуждалось, что если π=a+bω простое с нормой p, то кубическая сумма Гаусса по модулю p — это примерно кубический корень из pπ

спускаясь от общих разговоров к конкретным вычислениям: N(1+3ω)=7, мы хотели бы извлечь кубический корень из 7(1+3ω), попробуем взять эту самую сумму Гаусса:

zeta = exp(2*pi*I/7)
g = sum(omega**k * zeta**(3**k) for k in range(6))
print("-g^6 vs lambda1^3:",N(-g**6),N(lambda1**3))
print(“-g^2 vs lambda1:”,N(-g**2),N(lambda1))

(число 3 в определении g — это первообразный корень mod 7; отметим, что g — это, как и было обещано, линейная комбинация каких-то корней из единицы)

запустив программу можно увидеть, что g³=7(1+3ω) (могли бы получить сопряженное и/или какой-то знак), но -g² — не тот кубический корень, который нам нужен; нетрудно перебрать варианты, правильный ответ λ₁=-ωg²

l1 = -omega*g**2
print("l1 vs lambda1:",N(l1),N(lambda1))


5.
осталось превратить это в выражение для корней

по определению лямбд, θ₀=(λ₀+λ₁+λ₂)/3; в нашем случае λ₀=8, а λ₁ и λ₂ комплексно сопряжены, так что можно написать

t0 = (2*re(expand(l1))+8)/3
print("t0 vs theta0",N(t0),N(theta0))
print(t0)

так как всё уже выражено через корни из единицы, после взятия вещественной части sympy сразу даст ответ, записанный через косинусы:

-10*cos(2*pi/21)/3 - 4*cos(2*pi/7) - 2*cos(4*pi/21) - 4*cos(8*pi/21)/3 - 2*cos(10*pi/21) + 4*cos(pi/21)/3 + 8*cos(pi/7)/3 + 10*cos(5*pi/21)/3 + 8/3


6.
можно выразить и остальные корни

t0 = (2*re(expand(l1))+8)/3
t1 = (2*re(expand(l1*omega**2))+8)/3
t2 = (2*re(expand(l1*omega))+8)/3

как связаны получающиеся выражения?

вот они (слегка переписанные — в одинаковом порядке и т.п.):

t0 = 8/3
- (10/3)*(cos(2*pi/21) + cos(16*pi/21))
- (8/3)*cos(6*pi/7) - 4*cos(2*pi/7)
- 2*(cos(4*pi/21) + cos(10*pi/21))
- (4/3)*(cos(8*pi/21) + cos(20*pi/21))

t1 = 8/3
- (10/3)*(cos(4*pi/21) + cos(10*pi/21))
- (8/3)*cos(2*pi/7) - 4*cos(4*pi/7)
- 2*(cos(8*pi/21) + cos(20*pi/21))
- (4/3)*(cos(16*pi/21) + cos(2*pi/21))

t2 = 8/3
- (10/3)*(cos(8*pi/21) + cos(20*pi/21))
- (8/3)*cos(4*pi/7) - 4*cos(6*pi/7)
- 2*(cos(16*pi/21) + cos(2*pi/21))
- (4/3)*(cos(10*pi/21) + cos(4*pi/21))

— видно, что следующее выражение можно получить, увеличив в предыдущем все аргументы вдвое

нетрудно и без выписывания этих сумм понять, почему так должно быть: автоморфизм ζ→ζ², ω→ω² поля Q(ζ,ω) домножает g на кубический характер двойки mod 7, т.е. на ω², т.е. λ₁=-ωg²→-ω²(ω²g)²=λ₁/ω etc — то есть действительно сдвигает корни на один по циклу

(вообще группа Галуа циклотомического поля устроена довольно просто, так что какой-то рецепт такого рода для получения одного корня из другого заменой аргументов косинусов можно найти для любого кубического уравнения с квадратным дискриминантом)

наверное от группы можно было и плясать — перебирать элементы порядка 3 в Z/2×Z/6, для каждого варианта писать свои суммы, считать соотв. мин. многочлены, то-сё… не продумывал



group-telegram.com/compmathweekly/63
Create:
Last Update:

(продолжение, начало выше)

4.
итак, корни кубического уравнения выражаются через лямбды, и в нашем случае λ₁³=-7²(1+3ω)²

теорема Кронекера-Вебера (whatever it means) гарантирует, что λ₁ можно выразить через корни из единицы, но как конкретно это сделать?

выше обсуждалось, что если π=a+bω простое с нормой p, то кубическая сумма Гаусса по модулю p — это примерно кубический корень из pπ

спускаясь от общих разговоров к конкретным вычислениям: N(1+3ω)=7, мы хотели бы извлечь кубический корень из 7(1+3ω), попробуем взять эту самую сумму Гаусса:


zeta = exp(2*pi*I/7)
g = sum(omega**k * zeta**(3**k) for k in range(6))
print("-g^6 vs lambda1^3:",N(-g**6),N(lambda1**3))
print(“-g^2 vs lambda1:”,N(-g**2),N(lambda1))

(число 3 в определении g — это первообразный корень mod 7; отметим, что g — это, как и было обещано, линейная комбинация каких-то корней из единицы)

запустив программу можно увидеть, что g³=7(1+3ω) (могли бы получить сопряженное и/или какой-то знак), но -g² — не тот кубический корень, который нам нужен; нетрудно перебрать варианты, правильный ответ λ₁=-ωg²

l1 = -omega*g**2
print("l1 vs lambda1:",N(l1),N(lambda1))


5.
осталось превратить это в выражение для корней

по определению лямбд, θ₀=(λ₀+λ₁+λ₂)/3; в нашем случае λ₀=8, а λ₁ и λ₂ комплексно сопряжены, так что можно написать

t0 = (2*re(expand(l1))+8)/3
print("t0 vs theta0",N(t0),N(theta0))
print(t0)

так как всё уже выражено через корни из единицы, после взятия вещественной части sympy сразу даст ответ, записанный через косинусы:

-10*cos(2*pi/21)/3 - 4*cos(2*pi/7) - 2*cos(4*pi/21) - 4*cos(8*pi/21)/3 - 2*cos(10*pi/21) + 4*cos(pi/21)/3 + 8*cos(pi/7)/3 + 10*cos(5*pi/21)/3 + 8/3


6.
можно выразить и остальные корни

t0 = (2*re(expand(l1))+8)/3
t1 = (2*re(expand(l1*omega**2))+8)/3
t2 = (2*re(expand(l1*omega))+8)/3

как связаны получающиеся выражения?

вот они (слегка переписанные — в одинаковом порядке и т.п.):

t0 = 8/3
- (10/3)*(cos(2*pi/21) + cos(16*pi/21))
- (8/3)*cos(6*pi/7) - 4*cos(2*pi/7)
- 2*(cos(4*pi/21) + cos(10*pi/21))
- (4/3)*(cos(8*pi/21) + cos(20*pi/21))

t1 = 8/3
- (10/3)*(cos(4*pi/21) + cos(10*pi/21))
- (8/3)*cos(2*pi/7) - 4*cos(4*pi/7)
- 2*(cos(8*pi/21) + cos(20*pi/21))
- (4/3)*(cos(16*pi/21) + cos(2*pi/21))

t2 = 8/3
- (10/3)*(cos(8*pi/21) + cos(20*pi/21))
- (8/3)*cos(4*pi/7) - 4*cos(6*pi/7)
- 2*(cos(16*pi/21) + cos(2*pi/21))
- (4/3)*(cos(10*pi/21) + cos(4*pi/21))

— видно, что следующее выражение можно получить, увеличив в предыдущем все аргументы вдвое

нетрудно и без выписывания этих сумм понять, почему так должно быть: автоморфизм ζ→ζ², ω→ω² поля Q(ζ,ω) домножает g на кубический характер двойки mod 7, т.е. на ω², т.е. λ₁=-ωg²→-ω²(ω²g)²=λ₁/ω etc — то есть действительно сдвигает корни на один по циклу

(вообще группа Галуа циклотомического поля устроена довольно просто, так что какой-то рецепт такого рода для получения одного корня из другого заменой аргументов косинусов можно найти для любого кубического уравнения с квадратным дискриминантом)

наверное от группы можно было и плясать — перебирать элементы порядка 3 в Z/2×Z/6, для каждого варианта писать свои суммы, считать соотв. мин. многочлены, то-сё… не продумывал

BY Компьютерная математика Weekly


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/compmathweekly/63

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%.
from ms


Telegram Компьютерная математика Weekly
FROM American