Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/irandeeplearning/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Deep learning channel | Telegram Webview: irandeeplearning/508 -
Telegram Group & Telegram Channel
If you're interested in federated learning, particularly in medical imaging, we invite you to join our seminar tomorrow (Friday) at 11:00 a.m. Iran time! Zoom: https://oist.zoom.us/j/95908496615?pwd=akxZNmprLzNXY212TFh0ZWQ1ZlNyUT09
Meeting ID: 959 0849 6615
Passcode: 767685

Speaker: Prof. Shadi Albarqouni, Computational Medical Imaging Research, University of Bonn

Title: Unlocking the Potential of Federated Learning in Medical Imaging


Abstract: Deep Learning (DL) stands at the forefront of artificial intelligence, revolutionizing computer science with its prowess in various tasks, especially in computer vision and medical applications. Yet, its success hinges on vast data resources, a challenge exacerbated in healthcare by privacy concerns. Enter Federated Learning, a groundbreaking technology poised to transform how DL models are trained without compromising data security. By allowing local hospitals to share only trained parameters with a centralized DL model, Federated Learning fosters collaboration while preserving privacy. However, hurdles persist, including heterogeneity, domain shift, data scarcity, and multi-modal complexities inherent in medical imaging. In this illuminating talk, we delve into the clinical workflow and confront the common challenges facing AI in Medicine. Our focus then shifts to Federated Learning, exploring its promise, pitfalls, and potential solutions. Drawing from recent breakthroughs, including a compelling MR Brain imaging case study published in Nature Machine Intelligence, we navigate the landscape of secure and efficient AI adoption in healthcare.


Bio: Shadi Albarqouni, a pioneering figure in Computational Medical Imaging, serves as a Professor at the University of Bonn and an AI Young Investigator Group Leader at Helmholtz AI. With significant roles at Imperial College London, ETH Zurich, and the Technical University of Munich (TUM), Shadi's impact reverberates through his 100+ publications in esteemed journals and conferences. His expertise extends beyond academia, with contributions as an Associate Editor at IEEE Transactions on Medical Imaging and evaluator for national and international grants like DFG, BMBF, and EC. Recognized with awards like the DAAD PRIME Fellowship, Shadi fosters collaboration through AGYA and ELLIS memberships and initiatives like the Palestine Young Academy and the RISE-MICCAI community, focusing on innovative medical solutions and knowledge transfer to emerging countries. Explore more about his work at https://albarqouni.github.io/.



group-telegram.com/irandeeplearning/508
Create:
Last Update:

If you're interested in federated learning, particularly in medical imaging, we invite you to join our seminar tomorrow (Friday) at 11:00 a.m. Iran time! Zoom: https://oist.zoom.us/j/95908496615?pwd=akxZNmprLzNXY212TFh0ZWQ1ZlNyUT09
Meeting ID: 959 0849 6615
Passcode: 767685

Speaker: Prof. Shadi Albarqouni, Computational Medical Imaging Research, University of Bonn

Title: Unlocking the Potential of Federated Learning in Medical Imaging


Abstract: Deep Learning (DL) stands at the forefront of artificial intelligence, revolutionizing computer science with its prowess in various tasks, especially in computer vision and medical applications. Yet, its success hinges on vast data resources, a challenge exacerbated in healthcare by privacy concerns. Enter Federated Learning, a groundbreaking technology poised to transform how DL models are trained without compromising data security. By allowing local hospitals to share only trained parameters with a centralized DL model, Federated Learning fosters collaboration while preserving privacy. However, hurdles persist, including heterogeneity, domain shift, data scarcity, and multi-modal complexities inherent in medical imaging. In this illuminating talk, we delve into the clinical workflow and confront the common challenges facing AI in Medicine. Our focus then shifts to Federated Learning, exploring its promise, pitfalls, and potential solutions. Drawing from recent breakthroughs, including a compelling MR Brain imaging case study published in Nature Machine Intelligence, we navigate the landscape of secure and efficient AI adoption in healthcare.


Bio: Shadi Albarqouni, a pioneering figure in Computational Medical Imaging, serves as a Professor at the University of Bonn and an AI Young Investigator Group Leader at Helmholtz AI. With significant roles at Imperial College London, ETH Zurich, and the Technical University of Munich (TUM), Shadi's impact reverberates through his 100+ publications in esteemed journals and conferences. His expertise extends beyond academia, with contributions as an Associate Editor at IEEE Transactions on Medical Imaging and evaluator for national and international grants like DFG, BMBF, and EC. Recognized with awards like the DAAD PRIME Fellowship, Shadi fosters collaboration through AGYA and ELLIS memberships and initiatives like the Palestine Young Academy and the RISE-MICCAI community, focusing on innovative medical solutions and knowledge transfer to emerging countries. Explore more about his work at https://albarqouni.github.io/.

BY Deep learning channel


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/irandeeplearning/508

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips.
from ms


Telegram Deep learning channel
FROM American