Telegram Group & Telegram Channel
Суть атаки в следующем. У нас есть гипотеза, что есть несколько регионов в пространстве активаций большой языковой модели, которые приводят к одной и той же генерации. У нас есть некоторая защита – для простоты возьмем линейный классификатор – которая обучена на активациях какого-нибудь слоя разделять активации, которые вызываются джейлбрейками и прочим недопустимым выводом, от обычных допустимых запросов. Давайте попробуем найти такой вызывающий недопустимый ввод регион, который находится по другую сторону от разделяющей гиперплоскости классификатора. Возможно ли это? Оказывается, что да.

Для этого мы будем решать оптимизационную задачу: сохранить поведение таким же (назовем это поведенческой функцией потерь) и при этом обмануть классификатор (функция потерь обфускации). В качестве последнего может выступать собственно скор линейного или MLP-классификатора, KL-дивергенция при детектировании OOD или даже сила активации признака, если в качестве детектора мы используем SAE. Для поведенческого лосса возьмем просто кросс-энтропию для необходимого нам продолжения. Для оценки эффективности возьмем StrongREJECT, метрикой же будет выступать Recall@FPR при FPR равном достаточно либеральным 1%. Жертвой выступит Llama-3-8B.

В качестве адверсариал-суффикса можно использовать как софт-промпт (эмбеддинги, которым не соответствуют реальные токены), так и пространство токенов, причем в пространстве токенов атака делается на базе FLRT без доступа к градиентам. Результатом такой атаки становится 0% детектирования атак при ~80% успеха с точки зрения недопустимого вывода, причем атаки против одного детектора (например, OOD) переносятся на другой, например, MLP. Кроме того, если натренировать детектор обнаруживать активации, связанные с обфусцирующим суффиксом, то атакующий может найти еще один регион, который приведет к джейлбрейку – и такой пинг-понг может продолжаться десятки раз: исследователи провели эксперимент, в котором атакующий находил новый суффикс после 70 итераций.

В случае с SAE детектор отслеживает, есть ли интересующие нас активации в пространстве разреженного автоэнкодера – там активации каждого нейрона имеют, как предполагается, достаточно однозначную семантику. В качестве атак исследователи ищут такой суффикс, чтобы заставить модель генерировать SQL, не возбуждая признаки, связанные с SQL. SQL вместо джейлбрейка выбирается, чтобы можно было легко оценить качество генерации – достаточно выполнить запрос и проверить результат. Это у них, разумеется, получается: модель, в данном случае Gemma-2-2B, генерирует SQL, не вызывая детекта со стороны монитора SAE, в 100% случаев при чувствительности монитора в 2% FPR. Но здесь находится и ограничение: чем на большем количестве слоев мы пытаемся обфусцировать активации, тем хуже качество SQL: с 34% бейзлайна (без атаки) падение качества может составить до 10% уже при попытках обфускации на 10 слоях.



group-telegram.com/llmsecurity/535
Create:
Last Update:

Суть атаки в следующем. У нас есть гипотеза, что есть несколько регионов в пространстве активаций большой языковой модели, которые приводят к одной и той же генерации. У нас есть некоторая защита – для простоты возьмем линейный классификатор – которая обучена на активациях какого-нибудь слоя разделять активации, которые вызываются джейлбрейками и прочим недопустимым выводом, от обычных допустимых запросов. Давайте попробуем найти такой вызывающий недопустимый ввод регион, который находится по другую сторону от разделяющей гиперплоскости классификатора. Возможно ли это? Оказывается, что да.

Для этого мы будем решать оптимизационную задачу: сохранить поведение таким же (назовем это поведенческой функцией потерь) и при этом обмануть классификатор (функция потерь обфускации). В качестве последнего может выступать собственно скор линейного или MLP-классификатора, KL-дивергенция при детектировании OOD или даже сила активации признака, если в качестве детектора мы используем SAE. Для поведенческого лосса возьмем просто кросс-энтропию для необходимого нам продолжения. Для оценки эффективности возьмем StrongREJECT, метрикой же будет выступать Recall@FPR при FPR равном достаточно либеральным 1%. Жертвой выступит Llama-3-8B.

В качестве адверсариал-суффикса можно использовать как софт-промпт (эмбеддинги, которым не соответствуют реальные токены), так и пространство токенов, причем в пространстве токенов атака делается на базе FLRT без доступа к градиентам. Результатом такой атаки становится 0% детектирования атак при ~80% успеха с точки зрения недопустимого вывода, причем атаки против одного детектора (например, OOD) переносятся на другой, например, MLP. Кроме того, если натренировать детектор обнаруживать активации, связанные с обфусцирующим суффиксом, то атакующий может найти еще один регион, который приведет к джейлбрейку – и такой пинг-понг может продолжаться десятки раз: исследователи провели эксперимент, в котором атакующий находил новый суффикс после 70 итераций.

В случае с SAE детектор отслеживает, есть ли интересующие нас активации в пространстве разреженного автоэнкодера – там активации каждого нейрона имеют, как предполагается, достаточно однозначную семантику. В качестве атак исследователи ищут такой суффикс, чтобы заставить модель генерировать SQL, не возбуждая признаки, связанные с SQL. SQL вместо джейлбрейка выбирается, чтобы можно было легко оценить качество генерации – достаточно выполнить запрос и проверить результат. Это у них, разумеется, получается: модель, в данном случае Gemma-2-2B, генерирует SQL, не вызывая детекта со стороны монитора SAE, в 100% случаев при чувствительности монитора в 2% FPR. Но здесь находится и ограничение: чем на большем количестве слоев мы пытаемся обфусцировать активации, тем хуже качество SQL: с 34% бейзлайна (без атаки) падение качества может составить до 10% уже при попытках обфускации на 10 слоях.

BY llm security и каланы








Share with your friend now:
group-telegram.com/llmsecurity/535

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country.
from ms


Telegram llm security и каланы
FROM American