Telegram Group & Telegram Channel
neuro-october.png
4.6 MB
tasty neuro bci papers - october 2024
[3/4]

Synthetic touch for brain-controlled bionic hands: tactile edges and motion via patterned microstimulation of the human somatosensory cortex

what: complex touch sensations using patterned brain stimulation. Participants felt edges, shapes, and motion.
- Uses multiple electrodes firing in patterns in somatosensory cortex (S1)
- Creates edge and shape sensations
- Controls motion direction and speed
- Winner of BCI AWARD 2024
video: https://youtu.be/ipojAWqTxAA

Measuring instability in chronic human intracortical neural recordings towards stable, long-term brain-computer interfaces

what: metric to track distribution shift
- apply KL divergence for neural recording
- show that it's well correlated with decoder performance.
- good thing to track moment of recalibration.
link: https://www.nature.com/articles/s42003-024-06784-4


Accurate neural control of a hand prosthesis by posture-related activity in the primate grasping circuit

what: hand prosthetic control using neural posture signals instead of traditional velocity. Achieves precision grip control in macaques.
- Uses posture transitions vs standard velocity control
- Works with 3 brain areas (AIP, F5, M1)
- Matches natural hand control patterns
link: https://www.cell.com/neuron/abstract/S0896-6273(24)00688-3

my thoughts

Shift from "feeling dots" to "feeling objects" is amazing. That's like upgrading from morse code to actual writing for touch sensations. For sure, it's not perfect and we have to continue. In my view we should focus on "smart" stimulation. Which can use diverse feedback from participant. Maybe mix of RL and SFT.

Measuring changes in the neural recording is must have in any bci application. KL div is good starting point. however, plots show smooth performance degradation. So potentially we could capture this shift day by day and somehow fix it. For example, it's interesting to consider "stabilizer model" which should to match shifted data into original distribution. Flow matching, diffusion, or just AE with KL loss.



group-telegram.com/neural_cell/204
Create:
Last Update:

tasty neuro bci papers - october 2024
[3/4]

Synthetic touch for brain-controlled bionic hands: tactile edges and motion via patterned microstimulation of the human somatosensory cortex

what: complex touch sensations using patterned brain stimulation. Participants felt edges, shapes, and motion.
- Uses multiple electrodes firing in patterns in somatosensory cortex (S1)
- Creates edge and shape sensations
- Controls motion direction and speed
- Winner of BCI AWARD 2024
video: https://youtu.be/ipojAWqTxAA

Measuring instability in chronic human intracortical neural recordings towards stable, long-term brain-computer interfaces

what: metric to track distribution shift
- apply KL divergence for neural recording
- show that it's well correlated with decoder performance.
- good thing to track moment of recalibration.
link: https://www.nature.com/articles/s42003-024-06784-4


Accurate neural control of a hand prosthesis by posture-related activity in the primate grasping circuit

what: hand prosthetic control using neural posture signals instead of traditional velocity. Achieves precision grip control in macaques.
- Uses posture transitions vs standard velocity control
- Works with 3 brain areas (AIP, F5, M1)
- Matches natural hand control patterns
link: https://www.cell.com/neuron/abstract/S0896-6273(24)00688-3

my thoughts

Shift from "feeling dots" to "feeling objects" is amazing. That's like upgrading from morse code to actual writing for touch sensations. For sure, it's not perfect and we have to continue. In my view we should focus on "smart" stimulation. Which can use diverse feedback from participant. Maybe mix of RL and SFT.

Measuring changes in the neural recording is must have in any bci application. KL div is good starting point. however, plots show smooth performance degradation. So potentially we could capture this shift day by day and somehow fix it. For example, it's interesting to consider "stabilizer model" which should to match shifted data into original distribution. Flow matching, diffusion, or just AE with KL loss.

BY the last neural cell


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/neural_cell/204

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. Some privacy experts say Telegram is not secure enough As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed.
from ms


Telegram the last neural cell
FROM American