Telegram Group & Telegram Channel
2024-december-transformers.png
904.2 KB
tasty ai papers | december 2024

1️⃣ Byte Latent Transformer: Patches Scale Better Than Tokens

what: train llama on raw bytes without a fixed vocabulary.
- dynamically patches bytes usign local small encoder
- main decoder process these patch in AR setting
- local deocder makes next byte prediction.
paper: https://arxiv.org/abs/2412.09871

2️⃣ Large Concept Models: Language Modeling in a Sentence Representation Space

what: work with entire sentences as "concepts" through SONAR embeddings.
- quite similar with the first paper here, but it merges tokens into high dim embeddings
- working with sentence-level embeddings directly.

paper: https://arxiv.org/abs/2412.08821

3️⃣ GenCast predicts weather and the risks of extreme conditions with state-of-the-art accuracy

what: Created a diffusion model for probabilistic weather forecasting that generates 15-day predictions with 12-hour steps
how:
- It aggregates two previous timesteps to predict the next weather state
- Instead of directly sampling weather state, it generates residuals (differences) relative to the previous state.
- Артемий в канале AI для Всех сделал ревью на русском, почитайте.

paper: https://www.nature.com/articles/s41586-024-08252-9

my thoughts:
Looks like we're finally getting closer to how humans actually process language, not just crunching tokens like robots. Whether it's patching bytes or bundling tokens into sentence embeddings, this hierarchical approach seems to be the way forward.
GenCast - is just super interesting adoption of modern AI to real problems in natural science.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/neural_cell/225
Create:
Last Update:

tasty ai papers | december 2024

1️⃣ Byte Latent Transformer: Patches Scale Better Than Tokens

what: train llama on raw bytes without a fixed vocabulary.
- dynamically patches bytes usign local small encoder
- main decoder process these patch in AR setting
- local deocder makes next byte prediction.
paper: https://arxiv.org/abs/2412.09871

2️⃣ Large Concept Models: Language Modeling in a Sentence Representation Space

what: work with entire sentences as "concepts" through SONAR embeddings.
- quite similar with the first paper here, but it merges tokens into high dim embeddings
- working with sentence-level embeddings directly.

paper: https://arxiv.org/abs/2412.08821

3️⃣ GenCast predicts weather and the risks of extreme conditions with state-of-the-art accuracy

what: Created a diffusion model for probabilistic weather forecasting that generates 15-day predictions with 12-hour steps
how:
- It aggregates two previous timesteps to predict the next weather state
- Instead of directly sampling weather state, it generates residuals (differences) relative to the previous state.
- Артемий в канале AI для Всех сделал ревью на русском, почитайте.

paper: https://www.nature.com/articles/s41586-024-08252-9

my thoughts:
Looks like we're finally getting closer to how humans actually process language, not just crunching tokens like robots. Whether it's patching bytes or bundling tokens into sentence embeddings, this hierarchical approach seems to be the way forward.
GenCast - is just super interesting adoption of modern AI to real problems in natural science.

BY the last neural cell


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/neural_cell/225

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Telegram was founded in 2013 by two Russian brothers, Nikolai and Pavel Durov. In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30.
from ms


Telegram the last neural cell
FROM American