Telegram Group & Telegram Channel
Review | Smart stimulation patterns for visual prostheses

🔘Towards biologically plausible phosphene simulation

tl;dr: Differentiable PyTorch simulator translating V1 stimulation to phosphene perception for end-to-end optimization
- Fully differentiable pipeline allowing optimization of all stimulation parameters via backpropagation
- Based on many experimental data.
- Bridges gap between electrode-level stimulation and resulting visual perception

link: https://doi.org/10.7554/eLife.85812

🔘Human-in-the-Loop Optimization for Visual Prostheses

tl;dr: Neural encoder + Preference bayesian optimization.
- Train deep stimulus encoder (DSE): transform images -> stimulation.
- Add "patient params" 13 values as additional input into DSE.
- Uses Preferential Bayesian Optimization with GP prior to update only "patients" params using only binary comparisons
- Achieves 80% preference alignment after only 150 comparisons despite 20% simulated noise in human feedback

link: https://arxiv.org/abs/2306.13104

🔘MiSO: Optimizing brain stimulation for target neural states

tl;dr: ML system that predicts and optimizes multi-electrode stimulation to achieve specific neural activity patterns
- Utah array on monkey PFC
- One-two electrode stimulation with fixed frequency/amplitude
- Collect paired (stim, signals) data across multiple sessions
- Extract latent features using Factor Analysis (FA)
- Align latent spaces across sessions using Procrustes method
- Train CNN to predict latent states from stim patterns
- Apply epsilon-greedy optimizer to find optimal stimulation in closed-loop

link: https://www.nature.com/articles/s41467-023-42338-8

🔘Precise control with dynamically optimized electrical stimulation

tl;dr: Temporal dithering algorithm exploits neural integration window to enhance visual prosthesis performance by 40%
- Uses triphasic pulses at 0.1ms intervals optimized within neural integration time window (10-20ms)
- Implements spatial multiplexing with 200μm exclusion zones to prevent electrode interference
- Achieves 87% specificity in targeting ON vs OFF retinal pathways, solving a fundamental limitation of current implants

link: https://doi.org/10.7554/eLife.83424

my thoughts
The field is finally moving beyond simplistic zap-and-see approaches. These papers tackle predicting perception, minimizing patient burden, targeting neural states, and improving power efficiency. What excites me most is how these methods could work together - imagine MiSO's targeting combined with human feedback and efficient stimulation patterns. The missing piece? Understanding how neural activity translates to actual perception. Current approaches optimize for either brain patterns OR what people see, not both. I think the next breakthrough will come from models that bridge this gap, perhaps using contrastive learning to connect brain recordings with what people actually report seeing.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/neural_cell/271
Create:
Last Update:

Review | Smart stimulation patterns for visual prostheses

🔘Towards biologically plausible phosphene simulation

tl;dr: Differentiable PyTorch simulator translating V1 stimulation to phosphene perception for end-to-end optimization
- Fully differentiable pipeline allowing optimization of all stimulation parameters via backpropagation
- Based on many experimental data.
- Bridges gap between electrode-level stimulation and resulting visual perception

link: https://doi.org/10.7554/eLife.85812

🔘Human-in-the-Loop Optimization for Visual Prostheses

tl;dr: Neural encoder + Preference bayesian optimization.
- Train deep stimulus encoder (DSE): transform images -> stimulation.
- Add "patient params" 13 values as additional input into DSE.
- Uses Preferential Bayesian Optimization with GP prior to update only "patients" params using only binary comparisons
- Achieves 80% preference alignment after only 150 comparisons despite 20% simulated noise in human feedback

link: https://arxiv.org/abs/2306.13104

🔘MiSO: Optimizing brain stimulation for target neural states

tl;dr: ML system that predicts and optimizes multi-electrode stimulation to achieve specific neural activity patterns
- Utah array on monkey PFC
- One-two electrode stimulation with fixed frequency/amplitude
- Collect paired (stim, signals) data across multiple sessions
- Extract latent features using Factor Analysis (FA)
- Align latent spaces across sessions using Procrustes method
- Train CNN to predict latent states from stim patterns
- Apply epsilon-greedy optimizer to find optimal stimulation in closed-loop

link: https://www.nature.com/articles/s41467-023-42338-8

🔘Precise control with dynamically optimized electrical stimulation

tl;dr: Temporal dithering algorithm exploits neural integration window to enhance visual prosthesis performance by 40%
- Uses triphasic pulses at 0.1ms intervals optimized within neural integration time window (10-20ms)
- Implements spatial multiplexing with 200μm exclusion zones to prevent electrode interference
- Achieves 87% specificity in targeting ON vs OFF retinal pathways, solving a fundamental limitation of current implants

link: https://doi.org/10.7554/eLife.83424

my thoughts
The field is finally moving beyond simplistic zap-and-see approaches. These papers tackle predicting perception, minimizing patient burden, targeting neural states, and improving power efficiency. What excites me most is how these methods could work together - imagine MiSO's targeting combined with human feedback and efficient stimulation patterns. The missing piece? Understanding how neural activity translates to actual perception. Current approaches optimize for either brain patterns OR what people see, not both. I think the next breakthrough will come from models that bridge this gap, perhaps using contrastive learning to connect brain recordings with what people actually report seeing.

BY the last neural cell




Share with your friend now:
group-telegram.com/neural_cell/271

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War."
from ms


Telegram the last neural cell
FROM American