Telegram Group & Telegram Channel
Дмитрий Савостьянов Вещает
Вы ничего не знаете про AI (NLP), если не читали эти 10 статей Выбил себе про-план в опенаи, теперь могу делать дип ресерч с кликбейтными заголовками. Потестил на NLP, звучит разумно. 1. Hochreiter & Schmidhuber (1997) – LSTM. Решает проблему исчезающего…
Вы ничего не знаете про AI (Computer Vision), если не читали эти 10 статей

Мне понравилась предыдущая подборка по NLP, поэтому сделал еще одну. Кажется могу теперь подаваться в SEO’шники.

1. Canny (1986) – A Computational Approach to Edge Detection. Формализовал критерии оптимального обнаружения границ, заложив основу для извлечения признаков в компьютерном зрении. (edge detection, feature extraction)

2. Lowe (2004) – SIFT: Scale-Invariant Feature Transform. Ввел SIFT – алгоритм для поиска ключевых точек, устойчивых к изменению масштаба и повороту. (feature detection, keypoints, matching)

3. LeCun et al. (1998) – LeNet-5. Показал, что сверточные нейросети (CNN) могут превосходить традиционные методы для распознавания изображений. (convolutional neural networks, deep learning)

4. Krizhevsky et al. (2012) – AlexNet. Сделал глубокие нейросети мейнстримом, победив в ImageNet 2012. Ввел ReLU, Dropout и массово использовал GPU. (deep learning, CNN, ImageNet)

5. He et al. (2015) – ResNet: Deep Residual Learning. Ввел остаточные связи, позволив тренировать сети 100+ слоев без проблем деградации градиента. (residual connections, deep networks, architecture design)

6. Redmon et al. (2016) – YOLO: You Only Look Once. Превратил детекцию объектов в единую задачу регрессии, сделав ее в разы быстрее. (real-time object detection, one-stage detectors)

7. Chen et al. (2020) – SimCLR: Self-Supervised Learning. Показал, что модели могут учиться без разметки. (self-supervised learning, contrastive learning, representation learning)

8. Dosovitskiy et al. (2020) – Vision Transformer (ViT). Доказал, что трансформеры работают в CV, исключив CNN блоки. (transformers, self-attention, image classification)

9. Radford et al. (2021) – CLIP: Learning from Images and Text. Соединил NLP и CV, обучив модель понимать изображения через текстовые описания. (vision-language models, multimodal AI, zero-shot learning)

10. Tan & Le (2019) – EfficientNet. Предложил эффективный способ масштабирования нейросетей, получив SOTA-результаты при меньших затратах. (efficient architectures, AutoML, model scaling)



group-telegram.com/savostyanov_dmitry/622
Create:
Last Update:

Вы ничего не знаете про AI (Computer Vision), если не читали эти 10 статей

Мне понравилась предыдущая подборка по NLP, поэтому сделал еще одну. Кажется могу теперь подаваться в SEO’шники.

1. Canny (1986) – A Computational Approach to Edge Detection. Формализовал критерии оптимального обнаружения границ, заложив основу для извлечения признаков в компьютерном зрении. (edge detection, feature extraction)

2. Lowe (2004) – SIFT: Scale-Invariant Feature Transform. Ввел SIFT – алгоритм для поиска ключевых точек, устойчивых к изменению масштаба и повороту. (feature detection, keypoints, matching)

3. LeCun et al. (1998) – LeNet-5. Показал, что сверточные нейросети (CNN) могут превосходить традиционные методы для распознавания изображений. (convolutional neural networks, deep learning)

4. Krizhevsky et al. (2012) – AlexNet. Сделал глубокие нейросети мейнстримом, победив в ImageNet 2012. Ввел ReLU, Dropout и массово использовал GPU. (deep learning, CNN, ImageNet)

5. He et al. (2015) – ResNet: Deep Residual Learning. Ввел остаточные связи, позволив тренировать сети 100+ слоев без проблем деградации градиента. (residual connections, deep networks, architecture design)

6. Redmon et al. (2016) – YOLO: You Only Look Once. Превратил детекцию объектов в единую задачу регрессии, сделав ее в разы быстрее. (real-time object detection, one-stage detectors)

7. Chen et al. (2020) – SimCLR: Self-Supervised Learning. Показал, что модели могут учиться без разметки. (self-supervised learning, contrastive learning, representation learning)

8. Dosovitskiy et al. (2020) – Vision Transformer (ViT). Доказал, что трансформеры работают в CV, исключив CNN блоки. (transformers, self-attention, image classification)

9. Radford et al. (2021) – CLIP: Learning from Images and Text. Соединил NLP и CV, обучив модель понимать изображения через текстовые описания. (vision-language models, multimodal AI, zero-shot learning)

10. Tan & Le (2019) – EfficientNet. Предложил эффективный способ масштабирования нейросетей, получив SOTA-результаты при меньших затратах. (efficient architectures, AutoML, model scaling)

BY Дмитрий Савостьянов Вещает


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/savostyanov_dmitry/622

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips.
from ms


Telegram Дмитрий Савостьянов Вещает
FROM American