Telegram Group & Telegram Channel
Forwarded from Нейроинтерфейсы (Sergei Shishkin)
Нейралинк тоже решил заняться генерацией искусственных мозговых данных

Neuralink сообщает об использовании им "мозгового симулятора" (brain simulator) для улучшения качества декодирования мозговых данных. Мол, интерфейсы мозг-компьютер подобны автономным автомобилям, поэтому "высококачественная симуляция моторной коры может ускорить проверку декодеров и дать возможность использовать методы оптимизации вроде обучения с подкреплением".

Некоторым ИИ-блогерам это показалось большим прогрессом, в духе успехов робототехники, "где sim2real позволил наконец-то научить роботов нормально ходить". Но об улучшении декодирования в сравнении с бейзлайном не сообщалось, так что очень похоже, что его (пока?) нет, и в реальном времени удается лишь приблизиться к точности декодера, обученного на реальных данных. (Видео есть в твите, причем там упоминается обезьяна Pager, хотя и не говорится, точно ли этот тот самый Пейджер, которого они когда-то показывали на известном видео, где он явно занимался читтерством). Собственно, они сами говорят, что находятся "in the early stages of generative brain modeling".

Обучение декодеров/классификаторов на синтетических данных -- тема, очень давно обсуждаемая в ИМК-сообществе, поскольку реальных данных всегда катастрофически не хватает. В нашей научной группе тоже кое-что в этом направлении делается (генерация ЭЭГ диффузионными моделями). Но пока что по-настоящему работающих решений никем предложено не было.

Стоит обратить внимание, что "симуляция моторной коры" тут пока что не более чем метафора -- на самом деле просто генерируется многоканальный сигнал, похожий на реальные сигналы, записываемые с неё. Но, конечно, при решении таких задач в принципе не исключено использование некоторых знаний об устройстве и функционировании коры.



group-telegram.com/neural_cell/232
Create:
Last Update:

Нейралинк тоже решил заняться генерацией искусственных мозговых данных

Neuralink сообщает об использовании им "мозгового симулятора" (brain simulator) для улучшения качества декодирования мозговых данных. Мол, интерфейсы мозг-компьютер подобны автономным автомобилям, поэтому "высококачественная симуляция моторной коры может ускорить проверку декодеров и дать возможность использовать методы оптимизации вроде обучения с подкреплением".

Некоторым ИИ-блогерам это показалось большим прогрессом, в духе успехов робототехники, "где sim2real позволил наконец-то научить роботов нормально ходить". Но об улучшении декодирования в сравнении с бейзлайном не сообщалось, так что очень похоже, что его (пока?) нет, и в реальном времени удается лишь приблизиться к точности декодера, обученного на реальных данных. (Видео есть в твите, причем там упоминается обезьяна Pager, хотя и не говорится, точно ли этот тот самый Пейджер, которого они когда-то показывали на известном видео, где он явно занимался читтерством). Собственно, они сами говорят, что находятся "in the early stages of generative brain modeling".

Обучение декодеров/классификаторов на синтетических данных -- тема, очень давно обсуждаемая в ИМК-сообществе, поскольку реальных данных всегда катастрофически не хватает. В нашей научной группе тоже кое-что в этом направлении делается (генерация ЭЭГ диффузионными моделями). Но пока что по-настоящему работающих решений никем предложено не было.

Стоит обратить внимание, что "симуляция моторной коры" тут пока что не более чем метафора -- на самом деле просто генерируется многоканальный сигнал, похожий на реальные сигналы, записываемые с неё. Но, конечно, при решении таких задач в принципе не исключено использование некоторых знаний об устройстве и функционировании коры.

BY the last neural cell




Share with your friend now:
group-telegram.com/neural_cell/232

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives?
from us


Telegram the last neural cell
FROM American