Forwarded from rizzearch
World and Human Action Models towards gameplay ideation
вот и майкрософт, как оказывается, год назад уже смогли зафигачить модель мира на основе мультиплеер пвп bleeding edge от ninja theory (оказывается помимо devil may cry & hellblade они еще вот такое делали). но почему-то решили это отправить nature а не на архив по классике
собрали 28 террабайт датасета траекторий игроков (полмиллиона игровых сессий, 1.4B фреймов при 10Гц, 7+ лет реального времени, еще отфильтровали под конкретную карту примерно год по объему)
обсервейшны (картинки) 300х180х3 и действия маппят в одно и то же пространство токенов, при том для первых обучают сначала ViT-VQGAN в 300м параметров на реконструкцию и perpectual лоссы, а потом и добавляют ган обжектив непосредственно. в качестве ворлд модели выступает отдельный каузальный трансформер который моделирует последовательность токенов обсервейшнов и действий (в качестве них кстати выступают сигналы с контроллеров хбокс геймпада)
назвали это WHAM - World and Human Action Model
самый большой трансформер смогли натренить размером в 1.6B что не оч много но при этом довольно классные на глаз результаты получились (с учетом маленького разрешения фреймов). и присутствует то, что авторы называют persistency, diversity, consistency: генерации соответствуют игровой механике и более-менее геймер интерфейсу, они получаются разнообразными и способны адаптироваться под нововведенные объекты посреди инференса (например если добавить врага или какой-то игровой объект то очень естественно произойдет с ними взаимодействие)
насчет последнего так же они еще релизнули WHAM Demonstrator - как я понял это своеобразная гуишка, которая позволяет удобнее производить такие интервенции в момент генерации + смотреть на каких фреймах может происходить расхождения по разным сценариям с одинакового начального картиночного промпта (то что относится к диверсити)
paper
weights
dataset 75гб
P.S. у нас еще есть другие посты про модели мира - [1] [2] [3]
вот и майкрософт, как оказывается, год назад уже смогли зафигачить модель мира на основе мультиплеер пвп bleeding edge от ninja theory (оказывается помимо devil may cry & hellblade они еще вот такое делали). но почему-то решили это отправить nature а не на архив по классике
собрали 28 террабайт датасета траекторий игроков (полмиллиона игровых сессий, 1.4B фреймов при 10Гц, 7+ лет реального времени, еще отфильтровали под конкретную карту примерно год по объему)
обсервейшны (картинки) 300х180х3 и действия маппят в одно и то же пространство токенов, при том для первых обучают сначала ViT-VQGAN в 300м параметров на реконструкцию и perpectual лоссы, а потом и добавляют ган обжектив непосредственно. в качестве ворлд модели выступает отдельный каузальный трансформер который моделирует последовательность токенов обсервейшнов и действий (в качестве них кстати выступают сигналы с контроллеров хбокс геймпада)
назвали это WHAM - World and Human Action Model
самый большой трансформер смогли натренить размером в 1.6B что не оч много но при этом довольно классные на глаз результаты получились (с учетом маленького разрешения фреймов). и присутствует то, что авторы называют persistency, diversity, consistency: генерации соответствуют игровой механике и более-менее геймер интерфейсу, они получаются разнообразными и способны адаптироваться под нововведенные объекты посреди инференса (например если добавить врага или какой-то игровой объект то очень естественно произойдет с ними взаимодействие)
насчет последнего так же они еще релизнули WHAM Demonstrator - как я понял это своеобразная гуишка, которая позволяет удобнее производить такие интервенции в момент генерации + смотреть на каких фреймах может происходить расхождения по разным сценариям с одинакового начального картиночного промпта (то что относится к диверсити)
paper
weights
dataset 75гб
group-telegram.com/neural_cell/258
Create:
Last Update:
Last Update:
World and Human Action Models towards gameplay ideation
вот и майкрософт, как оказывается, год назад уже смогли зафигачить модель мира на основе мультиплеер пвп bleeding edge от ninja theory (оказывается помимо devil may cry & hellblade они еще вот такое делали). но почему-то решили это отправить nature а не на архив по классике
собрали 28 террабайт датасета траекторий игроков (полмиллиона игровых сессий, 1.4B фреймов при 10Гц, 7+ лет реального времени, еще отфильтровали под конкретную карту примерно год по объему)
обсервейшны (картинки) 300х180х3 и действия маппят в одно и то же пространство токенов, при том для первых обучают сначала ViT-VQGAN в 300м параметров на реконструкцию и perpectual лоссы, а потом и добавляют ган обжектив непосредственно. в качестве ворлд модели выступает отдельный каузальный трансформер который моделирует последовательность токенов обсервейшнов и действий (в качестве них кстати выступают сигналы с контроллеров хбокс геймпада)
назвали это WHAM - World and Human Action Model
самый большой трансформер смогли натренить размером в 1.6B что не оч много но при этом довольно классные на глаз результаты получились (с учетом маленького разрешения фреймов). и присутствует то, что авторы называют persistency, diversity, consistency: генерации соответствуют игровой механике и более-менее геймер интерфейсу, они получаются разнообразными и способны адаптироваться под нововведенные объекты посреди инференса (например если добавить врага или какой-то игровой объект то очень естественно произойдет с ними взаимодействие)
насчет последнего так же они еще релизнули WHAM Demonstrator - как я понял это своеобразная гуишка, которая позволяет удобнее производить такие интервенции в момент генерации + смотреть на каких фреймах может происходить расхождения по разным сценариям с одинакового начального картиночного промпта (то что относится к диверсити)
paper
weights
dataset 75гб
P.S. у нас еще есть другие посты про модели мира - [1] [2] [3]
вот и майкрософт, как оказывается, год назад уже смогли зафигачить модель мира на основе мультиплеер пвп bleeding edge от ninja theory (оказывается помимо devil may cry & hellblade они еще вот такое делали). но почему-то решили это отправить nature а не на архив по классике
собрали 28 террабайт датасета траекторий игроков (полмиллиона игровых сессий, 1.4B фреймов при 10Гц, 7+ лет реального времени, еще отфильтровали под конкретную карту примерно год по объему)
обсервейшны (картинки) 300х180х3 и действия маппят в одно и то же пространство токенов, при том для первых обучают сначала ViT-VQGAN в 300м параметров на реконструкцию и perpectual лоссы, а потом и добавляют ган обжектив непосредственно. в качестве ворлд модели выступает отдельный каузальный трансформер который моделирует последовательность токенов обсервейшнов и действий (в качестве них кстати выступают сигналы с контроллеров хбокс геймпада)
назвали это WHAM - World and Human Action Model
самый большой трансформер смогли натренить размером в 1.6B что не оч много но при этом довольно классные на глаз результаты получились (с учетом маленького разрешения фреймов). и присутствует то, что авторы называют persistency, diversity, consistency: генерации соответствуют игровой механике и более-менее геймер интерфейсу, они получаются разнообразными и способны адаптироваться под нововведенные объекты посреди инференса (например если добавить врага или какой-то игровой объект то очень естественно произойдет с ними взаимодействие)
насчет последнего так же они еще релизнули WHAM Demonstrator - как я понял это своеобразная гуишка, которая позволяет удобнее производить такие интервенции в момент генерации + смотреть на каких фреймах может происходить расхождения по разным сценариям с одинакового начального картиночного промпта (то что относится к диверсити)
paper
weights
dataset 75гб
BY the last neural cell




Share with your friend now:
group-telegram.com/neural_cell/258