Telegram Group & Telegram Channel
Токенизация изображений: от сверток к трансформерам

Долгие годы для представления картинок в сжатом виде использовали разные вариации автоэнкодеров. Чтобы получить дискретное представление (то есть набор конкретных "символов" вместо непрерывных значений), применяли VQ-VAE — это по сути обычный авто энкодер, но с vector-quantized слоем посередине.

Но в середине прошлого года трансформеры добрались и до этой области.

Главная идея состоит в том, чтобы:
1. Заменить свертки на трансформеры
2. Убрать 2D-сетку и представлять картинку как просто последовательность токенов (без явной пространственной привязки для каждого токена)

TiTok: An Image is Worth 32 Tokens
link: https://arxiv.org/abs/2406.07550

Главная фишка — всего 32/64/128 токенов достаточно для представления целого изображения!

Как это работает:
- Энкодер и декодер — оба на основе Vision Transformer
- К патчам изображения присоединяются специальные registers токены
- Эти register токены квантуются (превращаются в вектора из словаря)
- эти токены подаются на вход декодеру вместе с [MASK] токенами

Интересно, что эта архитектура похожа на MAE (Masked Autoencoder), только с акцентом на компактное представление.

Для генерации используется maskGIT, и получаются довольно качественные изображения. При этом никакой диффузии — всё быстро и понятно.


FlexTok: гибкая длина токенов
link: https://arxiv.org/abs/2502.13967

FlexTok берет идею TiTok, но вместо работы с оригинальным изображением начинает с VAE-latents:
- Добавляет flow matching для декодера
- Использует регистры как условие для модели
- Применяет nested dropout для регистров, чтобы декодер мог работать с разным числом токенов (от 1 до 256)
- use FSQ квантизацию как COSMOS by NVIDIA


FlowMO: прямой подход
link: https://www.arxiv.org/abs/2503.11056

FlowMO - Это TiTok но с диффузией для декодера.
- Работаем напрямую с картинками
- Используем все токены для реконструкции
- тоже диффузионный декодер

Сравнение моделей
TiTok работает с исходными изображениями, не использует диффузионный декодер, применяет дистилляцию через MagViT VQVAE и стандартную квантизацию.

FlexTok работает с VAE-латентами, использует диффузионный декодер, обходится без дистилляции и применяет FSQ квантизацию с 64k векторов.

FlowMO работает с исходными изображениями, использует диффузионный декодер, обходится без дистилляции и применяет LFQ (sign) квантизацию со сложными функциями потерь.

Мои мысли о развитии этих подходов

Объединить MAE с TiTok:
- используем маскирование входного изображения, как в MAE. По идеи ддолжно ускорить работу и сделать токены ещё более информативными.

Объединить FlexTok, TiTok и MAE в один универсальный экстрактор признаков:
- Случайное маскирование для входного изображения (0, 0.25, 0.5, 0.75, 1)
- Nested dropout для латентов (как в FlexTok)
- Маскирование токенов для декодера: 0.5, 0.75, 1 как это делают уже в maskGIT
- Плюс сюда же ещё добавить REPA



group-telegram.com/neural_cell/275
Create:
Last Update:

Токенизация изображений: от сверток к трансформерам

Долгие годы для представления картинок в сжатом виде использовали разные вариации автоэнкодеров. Чтобы получить дискретное представление (то есть набор конкретных "символов" вместо непрерывных значений), применяли VQ-VAE — это по сути обычный авто энкодер, но с vector-quantized слоем посередине.

Но в середине прошлого года трансформеры добрались и до этой области.

Главная идея состоит в том, чтобы:
1. Заменить свертки на трансформеры
2. Убрать 2D-сетку и представлять картинку как просто последовательность токенов (без явной пространственной привязки для каждого токена)

TiTok: An Image is Worth 32 Tokens
link: https://arxiv.org/abs/2406.07550

Главная фишка — всего 32/64/128 токенов достаточно для представления целого изображения!

Как это работает:
- Энкодер и декодер — оба на основе Vision Transformer
- К патчам изображения присоединяются специальные registers токены
- Эти register токены квантуются (превращаются в вектора из словаря)
- эти токены подаются на вход декодеру вместе с [MASK] токенами

Интересно, что эта архитектура похожа на MAE (Masked Autoencoder), только с акцентом на компактное представление.

Для генерации используется maskGIT, и получаются довольно качественные изображения. При этом никакой диффузии — всё быстро и понятно.


FlexTok: гибкая длина токенов
link: https://arxiv.org/abs/2502.13967

FlexTok берет идею TiTok, но вместо работы с оригинальным изображением начинает с VAE-latents:
- Добавляет flow matching для декодера
- Использует регистры как условие для модели
- Применяет nested dropout для регистров, чтобы декодер мог работать с разным числом токенов (от 1 до 256)
- use FSQ квантизацию как COSMOS by NVIDIA


FlowMO: прямой подход
link: https://www.arxiv.org/abs/2503.11056

FlowMO - Это TiTok но с диффузией для декодера.
- Работаем напрямую с картинками
- Используем все токены для реконструкции
- тоже диффузионный декодер

Сравнение моделей
TiTok работает с исходными изображениями, не использует диффузионный декодер, применяет дистилляцию через MagViT VQVAE и стандартную квантизацию.

FlexTok работает с VAE-латентами, использует диффузионный декодер, обходится без дистилляции и применяет FSQ квантизацию с 64k векторов.

FlowMO работает с исходными изображениями, использует диффузионный декодер, обходится без дистилляции и применяет LFQ (sign) квантизацию со сложными функциями потерь.

Мои мысли о развитии этих подходов

Объединить MAE с TiTok:
- используем маскирование входного изображения, как в MAE. По идеи ддолжно ускорить работу и сделать токены ещё более информативными.

Объединить FlexTok, TiTok и MAE в один универсальный экстрактор признаков:
- Случайное маскирование для входного изображения (0, 0.25, 0.5, 0.75, 1)
- Nested dropout для латентов (как в FlexTok)
- Маскирование токенов для декодера: 0.5, 0.75, 1 как это делают уже в maskGIT
- Плюс сюда же ещё добавить REPA

BY the last neural cell






Share with your friend now:
group-telegram.com/neural_cell/275

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. "Markets were cheering this economic recovery and return to strong economic growth, but the cheers will turn to tears if the inflation outbreak pushes businesses and consumers to the brink of recession," he added. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. For tech stocks, “the main thing is yields,” Essaye said.
from us


Telegram the last neural cell
FROM American