Telegram Group & Telegram Channel
Новый продукт, новый повод понудеть про новую эру в BI

Databricks по-тихому выпустил свой BI. Но не простой. Назвали AI/BI Genie. Продукт умеет и в дашборды, но интересен в нём именно Generative AI.
Databricks, пожалуй, самая мощная в мире cloud дата-платформа, теперь закрывает BI пробел.
В основе лежит экспертиза Mosaic AI (куплен год назад за 1,3 млрд долларов).

Попытался понять, что уникального в этом релизе Databricks. Вот мысли:

Когда традиционные BI-вендоры создают Conversational BI в чатах, они часто делают это красиво, но не интероперабельно. Они опираются на свой дата-слой, который в BI всегда слабый. Семантический слой, как правило, отсутствует или выполнен поверхностно (исключение - Looker). Взаимодействие с внешним слоем метрик и метаданными хранилища у таких решений также поверхностное. Вот ThoughtSpot + dbt обещали что-то супернативное, но пока затихли.

Databricks, имея всё необходимое у себя — Lakehouse, Unity Catalog (дефолтный метадатастор и админка), свою трансформацию и семантический слой (yaml-файлы, определяющие метрики и связывающие физические и логические метаданные), имеет все, чтобы сделать наиболее качественный путь text->SQL->text->Viz.
Условно не нужно будет ничего, если все компоненты платформы настроены.

Главная проблема семантических моделей в том, что их нужно кому-то строить. Инженеры не умеют в бизнес-логику, а бизнес-аналитиков трудно принудить. В итоге настоящий семантический слой живет в сотнях голов разработчиков, а все попытки его зафиксировать отстают.
AI Databricks, как я понимаю, сам создаёт собственную доработанную семантическую модель, опираясь на действия пользователей и их фидбек поверх метаданных и метрик, взятых из платформы данных. Интересно, что AI просит тебя рассказать о метрике, если сам её не знает. (Кто-то точно будет над ним издеваться или неумышленно давать просто неверные знания)

Эту модель можно обучать, предзаписывая в неё промты и запросы в отношении конкретных доменов.

Идеальный путь, к которому это идёт — AI будет работать как аналитик, самостоятельно строить семантический слой и уточнять у команды: "я правильно понимаю, эта метрика определяется таким кодом и текущим значением?", а "эта её вариация — вот этим?", а дата-команда будет ему говорить: "да, да, нет, нет".

Другой плюс — сквозная безопасность на уровне Unity позволяет AI-BI давать ответы исходя из доступов пользователя, исключая необходимость доп настроек. То есть если согласован сам Databricks, дальше уже к безопасникам ходить не надо.

Лицензий отдельных вроде как нет. Но есть требования к компонентам.

Как итог, в таком сетапе - Databricks наверняка будет иметь все для самого цельного на рынке решения.

Однако остаётся вопрос: станет ли в итоге BI чат-бот (даже в идеальном свом воплощении) дополнением к производству и потреблению привычных отчётов, или дашборды останутся придатком к мейнстримному интерфейсу чат-бота?

Что думаете?



group-telegram.com/datanature/354
Create:
Last Update:

Новый продукт, новый повод понудеть про новую эру в BI

Databricks по-тихому выпустил свой BI. Но не простой. Назвали AI/BI Genie. Продукт умеет и в дашборды, но интересен в нём именно Generative AI.
Databricks, пожалуй, самая мощная в мире cloud дата-платформа, теперь закрывает BI пробел.
В основе лежит экспертиза Mosaic AI (куплен год назад за 1,3 млрд долларов).

Попытался понять, что уникального в этом релизе Databricks. Вот мысли:

Когда традиционные BI-вендоры создают Conversational BI в чатах, они часто делают это красиво, но не интероперабельно. Они опираются на свой дата-слой, который в BI всегда слабый. Семантический слой, как правило, отсутствует или выполнен поверхностно (исключение - Looker). Взаимодействие с внешним слоем метрик и метаданными хранилища у таких решений также поверхностное. Вот ThoughtSpot + dbt обещали что-то супернативное, но пока затихли.

Databricks, имея всё необходимое у себя — Lakehouse, Unity Catalog (дефолтный метадатастор и админка), свою трансформацию и семантический слой (yaml-файлы, определяющие метрики и связывающие физические и логические метаданные), имеет все, чтобы сделать наиболее качественный путь text->SQL->text->Viz.
Условно не нужно будет ничего, если все компоненты платформы настроены.

Главная проблема семантических моделей в том, что их нужно кому-то строить. Инженеры не умеют в бизнес-логику, а бизнес-аналитиков трудно принудить. В итоге настоящий семантический слой живет в сотнях голов разработчиков, а все попытки его зафиксировать отстают.
AI Databricks, как я понимаю, сам создаёт собственную доработанную семантическую модель, опираясь на действия пользователей и их фидбек поверх метаданных и метрик, взятых из платформы данных. Интересно, что AI просит тебя рассказать о метрике, если сам её не знает. (Кто-то точно будет над ним издеваться или неумышленно давать просто неверные знания)

Эту модель можно обучать, предзаписывая в неё промты и запросы в отношении конкретных доменов.

Идеальный путь, к которому это идёт — AI будет работать как аналитик, самостоятельно строить семантический слой и уточнять у команды: "я правильно понимаю, эта метрика определяется таким кодом и текущим значением?", а "эта её вариация — вот этим?", а дата-команда будет ему говорить: "да, да, нет, нет".

Другой плюс — сквозная безопасность на уровне Unity позволяет AI-BI давать ответы исходя из доступов пользователя, исключая необходимость доп настроек. То есть если согласован сам Databricks, дальше уже к безопасникам ходить не надо.

Лицензий отдельных вроде как нет. Но есть требования к компонентам.

Как итог, в таком сетапе - Databricks наверняка будет иметь все для самого цельного на рынке решения.

Однако остаётся вопрос: станет ли в итоге BI чат-бот (даже в идеальном свом воплощении) дополнением к производству и потреблению привычных отчётов, или дашборды останутся придатком к мейнстримному интерфейсу чат-бота?

Что думаете?

BY Data Nature 🕊






Share with your friend now:
group-telegram.com/datanature/354

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. There was another possible development: Reuters also reported that Ukraine said that Belarus could soon join the invasion of Ukraine. However, the AFP, citing a Pentagon official, said the U.S. hasn’t yet seen evidence that Belarusian troops are in Ukraine. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts.
from nl


Telegram Data Nature 🕊
FROM American