Telegram Group & Telegram Channel
🧠 SQL-задача с подвохом: "Невидимые дубликаты"

В таблице users хранятся email-адреса пользователей. Некоторые юзеры регистрируются повторно, маскируя один и тот же email по-разному:

| id | name | email |
|----|----------|--------------------------|
| 1 | Alice | [email protected] |
| 2 | Bob | [email protected] |
| 3 | Charlie | [email protected] |
| 4 | Dave | [email protected] |
| 5 | Eve | [email protected] |


🎯 Цель:
Найти количество уникальных пользователей, если:
- Регистр не учитывается (`alice` = `ALICE`)
- Пробелы игнорируются
- Для @gmail.com:
— Убираются точки в имени
— Всё после + отрезается

SQL-решение:


SELECT COUNT(DISTINCT normalized_email) AS unique_users
FROM (
SELECT
CASE
WHEN email ILIKE '%@gmail.com' THEN
REGEXP_REPLACE(
SPLIT_PART(SPLIT_PART(LOWER(TRIM(email)), '+', 1), '@', 1),
'\.', '', 'g'
) || '@gmail.com'
ELSE
LOWER(REPLACE(TRIM(email), ' ', ''))
END AS normalized_email
FROM users
) AS cleaned;


🔍 Как это работает:

LOWER(TRIM(email)) — убираем пробелы и регистр

SPLIT_PART(..., '+', 1) — отрезаем всё после +

REGEXP_REPLACE(..., '\.', '', 'g') — удаляем точки

Считаем DISTINCT, чтобы получить число уникальных email'ов

🔥 Используй такие трюки для:
• антифрода
• чистки базы
• аналитики поведения пользователей

#SQL #PostgreSQL #Gmail #EmailNormalization #DevTools #AntiFraud #DataCleaning #Analytics
👍103



group-telegram.com/sqlhub/1904
Create:
Last Update:

🧠 SQL-задача с подвохом: "Невидимые дубликаты"

В таблице users хранятся email-адреса пользователей. Некоторые юзеры регистрируются повторно, маскируя один и тот же email по-разному:

| id | name | email |
|----|----------|--------------------------|
| 1 | Alice | [email protected] |
| 2 | Bob | [email protected] |
| 3 | Charlie | [email protected] |
| 4 | Dave | [email protected] |
| 5 | Eve | [email protected] |


🎯 Цель:
Найти количество уникальных пользователей, если:
- Регистр не учитывается (`alice` = `ALICE`)
- Пробелы игнорируются
- Для @gmail.com:
— Убираются точки в имени
— Всё после + отрезается

SQL-решение:


SELECT COUNT(DISTINCT normalized_email) AS unique_users
FROM (
SELECT
CASE
WHEN email ILIKE '%@gmail.com' THEN
REGEXP_REPLACE(
SPLIT_PART(SPLIT_PART(LOWER(TRIM(email)), '+', 1), '@', 1),
'\.', '', 'g'
) || '@gmail.com'
ELSE
LOWER(REPLACE(TRIM(email), ' ', ''))
END AS normalized_email
FROM users
) AS cleaned;


🔍 Как это работает:

LOWER(TRIM(email)) — убираем пробелы и регистр

SPLIT_PART(..., '+', 1) — отрезаем всё после +

REGEXP_REPLACE(..., '\.', '', 'g') — удаляем точки

Считаем DISTINCT, чтобы получить число уникальных email'ов

🔥 Используй такие трюки для:
• антифрода
• чистки базы
• аналитики поведения пользователей

#SQL #PostgreSQL #Gmail #EmailNormalization #DevTools #AntiFraud #DataCleaning #Analytics

BY Data Science. SQL hub


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sqlhub/1904

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. Artem Kliuchnikov and his family fled Ukraine just days before the Russian invasion. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks.
from no


Telegram Data Science. SQL hub
FROM American