Telegram Group & Telegram Channel
🔍 Новые методы от Microsoft Research: прокачка рассуждения в LLM любого масштаба

Microsoft Research представила три ключевых стратегии для улучшения способностей ИИ к рассуждению — как в небольших, так и в больших моделях:

1️⃣ Архитектурные улучшения
Оптимизация слоёв и внимания особенно помогает малым языковым моделям (SLM), делая их рассуждение более последовательным.

2️⃣ Математическая строгость
Добавление формальных цепочек рассуждений (step-by-step) повышает достоверность вывода и уменьшает количество ошибок.

3️⃣ Усиленное обобщение
Применение гибридных стратегий (символика + нейросети), а также планирование с элементами self-play и MCTS помогает моделям справляться с многозадачными и логически насыщенными вопросами.

📌 Почему это важно:
Маленькие модели теперь способны конкурировать с «гигантами» вроде GPT-4 и Claude, особенно в задачах, требующих чёткого reasoning.
Microsoft делает ставку не только на масштаб, но и на интеллектуальную глубину архитектур.

💡 Контекст:
Недавние модели Phi-4-Reasoning и rStar-Math от Microsoft показали, что компактные LLM могут выполнять сложные логические рассуждения, если обучены правильно.

📈 Вывод:
Будущее — за «умными и компактными». Это значит:
• меньше ресурсов на инференс
• больше адаптивности
• лучшее внедрение в edge- и enterprise-сценарии

Время переосмыслить подход к архитектурам LLM. Не всегда больше — значит лучше.

📚 Подробнее в блоге Microsoft Research:
https://www.microsoft.com/en-us/research/blog/new-methods-boost-reasoning-in-small-and-large-language-models/

@data_analysis_ml



group-telegram.com/data_analysis_ml/3695
Create:
Last Update:

🔍 Новые методы от Microsoft Research: прокачка рассуждения в LLM любого масштаба

Microsoft Research представила три ключевых стратегии для улучшения способностей ИИ к рассуждению — как в небольших, так и в больших моделях:

1️⃣ Архитектурные улучшения
Оптимизация слоёв и внимания особенно помогает малым языковым моделям (SLM), делая их рассуждение более последовательным.

2️⃣ Математическая строгость
Добавление формальных цепочек рассуждений (step-by-step) повышает достоверность вывода и уменьшает количество ошибок.

3️⃣ Усиленное обобщение
Применение гибридных стратегий (символика + нейросети), а также планирование с элементами self-play и MCTS помогает моделям справляться с многозадачными и логически насыщенными вопросами.

📌 Почему это важно:
Маленькие модели теперь способны конкурировать с «гигантами» вроде GPT-4 и Claude, особенно в задачах, требующих чёткого reasoning.
Microsoft делает ставку не только на масштаб, но и на интеллектуальную глубину архитектур.

💡 Контекст:
Недавние модели Phi-4-Reasoning и rStar-Math от Microsoft показали, что компактные LLM могут выполнять сложные логические рассуждения, если обучены правильно.

📈 Вывод:
Будущее — за «умными и компактными». Это значит:
• меньше ресурсов на инференс
• больше адаптивности
• лучшее внедрение в edge- и enterprise-сценарии

Время переосмыслить подход к архитектурам LLM. Не всегда больше — значит лучше.

📚 Подробнее в блоге Microsoft Research:
https://www.microsoft.com/en-us/research/blog/new-methods-boost-reasoning-in-small-and-large-language-models/

@data_analysis_ml

BY Анализ данных (Data analysis)




Share with your friend now:
group-telegram.com/data_analysis_ml/3695

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

For tech stocks, “the main thing is yields,” Essaye said. Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns In 2018, Russia banned Telegram although it reversed the prohibition two years later. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries.
from pl


Telegram Анализ данных (Data analysis)
FROM American