Telegram Group & Telegram Channel
#PhD #humanmobility

Делая PhD, основанный на анализе GPS-локаций людей, я начала задаваться вопросами, которые раньше, при работе с коммерческими данными, не приходили мне в голову:

🔹 Существуют ли стандарты обработки GPS-сигналов для изучения человеческой мобильности?

🔹 Какие ограничения по приватности нужно учитывать при визуализации? Можно ли, например, добавлять на карту дом и работу одного человека?

🔹 Какие валидационные тесты помогут сделать так, чтобы "тебе поверили"?

🔹 Как сделать код полезным для тех, у кого нет доступа к моему датасету?

В поисках ответов я наткнулась на статью, которая лишь подтвердила актуальность проблемы: стандартов нет, но они должны быть выработаны.

🚧 В чем сложность?

1️⃣ Отсутствие открытых мобильных датасетов

Открытых мобильных датасетов почти нет, поэтому большинство исследований строится на коммерческих данных, которые отличаются по структуре, методам сбора и предобработки. Это делает повторение результатов практически невозможным.

📌Примеры доступных датасетов:
- раз
- два

У меня, например, GPS-сигналы уже агрегированы в "стоянки" и "поездки", тогда как большинство исследований работают с сырыми данными. Или, например, в некоторые месяцы в моем датасете нет сигналов с 12:00 до 18:00 – это критично, если копировать чужие методы без адаптации под такие особенности.

2️⃣ Разные задачи → разная предобработка

Кто-то ищет "дом и работу" пользователей, и ему нужны только те, у кого много сигналов, и часть из них ночью. А кто-то изучает "проходимость локаций" и ему нужны максимально сырые данные.

💡В качестве решения авторы называют синтетические данные

🔬 Их создают с помощью нейросетей и агентских моделей на основе транспортных опросов, демографических данных и иногда частично доступных мобильных данных. Модели учат причины и патерны перемещения людей и на их основе генерируют новые траектории.

📌 Примеры исследований:
- OpenPFLOW ( без нейронки)
- SynMob

Плюсы синтетических данных:
✔️ Доступность – их можно строить даже без реальных мобильных данных, нужны лишь классические опросы и метрики населения

✔️ Отсутствие технических артефактов – такие данные не содержат неожиданных пропусков или скачков в сигналах, как реальные данные

Минусы синтетических данных:
⚠️ Зависимость от исходных данных – например, если в Израиле построить такие данные на основе опросов только еврейского населения, не включив арабов, бедуинов, друзов и тд, то картина будет неполной. Хотя тут я должна оговориться, что и мобильные данные передают только то население, у которого есть телефоны.
⚠️ Ограниченность траекторий – модели чаще всего воспроизводят типичные маршруты людей и игнорируют неожиданные отклонения.
⚠️ Шум на индивидуальном уровне – на уровне отдельного человека присутствует много шума, поэтому изучать отдельное поведение по таким данным невозможно

💭 Получается, что несмотря на огромное число статей в сфере human mobility, изданных за последние 10 лет, очень немного было сделано для того, чтобы выработать единый подход в работе с мобильными данными.

Каждая лаборатория изобретает свой велосипед, поскольку практически невозможно повторить другие исследования и сравнить результаты из-за различий в данных и отсутствия детального описания их обработки.

Доступность же таких данных отдана на добрую волю компаний-агрегаторов GPS сигналов или мобильных операторов, поэтому большинство исследователей вообще не имеет к ним доступа и вынуждены изобретать очередной опрос на 100 человек, который никак не отражает реальную ситуацию😔
19👍4🔥3💯1



group-telegram.com/datainthecity/264
Create:
Last Update:

#PhD #humanmobility

Делая PhD, основанный на анализе GPS-локаций людей, я начала задаваться вопросами, которые раньше, при работе с коммерческими данными, не приходили мне в голову:

🔹 Существуют ли стандарты обработки GPS-сигналов для изучения человеческой мобильности?

🔹 Какие ограничения по приватности нужно учитывать при визуализации? Можно ли, например, добавлять на карту дом и работу одного человека?

🔹 Какие валидационные тесты помогут сделать так, чтобы "тебе поверили"?

🔹 Как сделать код полезным для тех, у кого нет доступа к моему датасету?

В поисках ответов я наткнулась на статью, которая лишь подтвердила актуальность проблемы: стандартов нет, но они должны быть выработаны.

🚧 В чем сложность?

1️⃣ Отсутствие открытых мобильных датасетов

Открытых мобильных датасетов почти нет, поэтому большинство исследований строится на коммерческих данных, которые отличаются по структуре, методам сбора и предобработки. Это делает повторение результатов практически невозможным.

📌Примеры доступных датасетов:
- раз
- два

У меня, например, GPS-сигналы уже агрегированы в "стоянки" и "поездки", тогда как большинство исследований работают с сырыми данными. Или, например, в некоторые месяцы в моем датасете нет сигналов с 12:00 до 18:00 – это критично, если копировать чужие методы без адаптации под такие особенности.

2️⃣ Разные задачи → разная предобработка

Кто-то ищет "дом и работу" пользователей, и ему нужны только те, у кого много сигналов, и часть из них ночью. А кто-то изучает "проходимость локаций" и ему нужны максимально сырые данные.

💡В качестве решения авторы называют синтетические данные

🔬 Их создают с помощью нейросетей и агентских моделей на основе транспортных опросов, демографических данных и иногда частично доступных мобильных данных. Модели учат причины и патерны перемещения людей и на их основе генерируют новые траектории.

📌 Примеры исследований:
- OpenPFLOW ( без нейронки)
- SynMob

Плюсы синтетических данных:
✔️ Доступность – их можно строить даже без реальных мобильных данных, нужны лишь классические опросы и метрики населения

✔️ Отсутствие технических артефактов – такие данные не содержат неожиданных пропусков или скачков в сигналах, как реальные данные

Минусы синтетических данных:
⚠️ Зависимость от исходных данных – например, если в Израиле построить такие данные на основе опросов только еврейского населения, не включив арабов, бедуинов, друзов и тд, то картина будет неполной. Хотя тут я должна оговориться, что и мобильные данные передают только то население, у которого есть телефоны.
⚠️ Ограниченность траекторий – модели чаще всего воспроизводят типичные маршруты людей и игнорируют неожиданные отклонения.
⚠️ Шум на индивидуальном уровне – на уровне отдельного человека присутствует много шума, поэтому изучать отдельное поведение по таким данным невозможно

💭 Получается, что несмотря на огромное число статей в сфере human mobility, изданных за последние 10 лет, очень немного было сделано для того, чтобы выработать единый подход в работе с мобильными данными.

Каждая лаборатория изобретает свой велосипед, поскольку практически невозможно повторить другие исследования и сравнить результаты из-за различий в данных и отсутствия детального описания их обработки.

Доступность же таких данных отдана на добрую волю компаний-агрегаторов GPS сигналов или мобильных операторов, поэтому большинство исследователей вообще не имеет к ним доступа и вынуждены изобретать очередной опрос на 100 человек, который никак не отражает реальную ситуацию😔

BY О городах и данных




Share with your friend now:
group-telegram.com/datainthecity/264

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. NEWS On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones.
from pl


Telegram О городах и данных
FROM American