Telegram Group & Telegram Channel
Концепция "зубчатого интеллекта"

Думаю, что многие из вас зайдя в очередной расхайпленный чат-бот с ИИ и не зная, что бы такого действительно полезного спросить, начинают с чего-нибудь вроде "А и Б сидели на трубе." и других логических задачек для детского садика. И когда вдруг чат-бот не может разгадать казалось бы столь легкую загадку, вы ликуете и закрываете чатик с чувством собственного превосходства со словами: "Да уж, далеко этой машине до меня... Долго еще она не сможет заменить такого умника как Я!".

Но почему так происходит, ведь все вокруг только и говорят о том как круто ЛЛМ решают ту или иную задачу, программирует на уровне мидлов, легко переваривает огромные массивы информации извлекая из них суть и т.д. и т.п?

Объясняя этот феномен Карпати ввел термин "jagged intelligence" (зубчатый интеллект). Этот концепт объясняет, почему языковые модели могут превосходить людей в решении сложных задач, но терпят неудачу в простых логических упражнениях.
"Зубчатый интеллект" проявляется в том, что модели демонстрируют выдающиеся результаты в областях, близко совпадающих с их обучающими данными, но показывают неожиданные провалы в задачах, требующих базовой логики или здравого смысла. Например, модель может написать сложное эссе о квантовой физике, но ошибиться в подсчете букв в простом слове.

Причина этого феномена кроется в том, что LLM не обладают истинным "пониманием" задач. Они полагаются на распознавание паттернов, а не на внутреннее осмысление, которым обладают люди. Это ограничение подчеркивает важность понимания того, что современный ИИ представляет собой очень мощный инструмент распознавания паттернов, а не систему общего интеллекта. Так что лучше пользуйтесь этой супер-силой, а не пытайтесь поставить её в тупик задачами на логику из детского сада, в этом нет никакого смысла.

Это серия постов с заблуждениями об ЛЛМ. Предыдущие здесь, здесь, здесь и здесь.

LawCoder



group-telegram.com/law_coder/198
Create:
Last Update:

Концепция "зубчатого интеллекта"

Думаю, что многие из вас зайдя в очередной расхайпленный чат-бот с ИИ и не зная, что бы такого действительно полезного спросить, начинают с чего-нибудь вроде "А и Б сидели на трубе." и других логических задачек для детского садика. И когда вдруг чат-бот не может разгадать казалось бы столь легкую загадку, вы ликуете и закрываете чатик с чувством собственного превосходства со словами: "Да уж, далеко этой машине до меня... Долго еще она не сможет заменить такого умника как Я!".

Но почему так происходит, ведь все вокруг только и говорят о том как круто ЛЛМ решают ту или иную задачу, программирует на уровне мидлов, легко переваривает огромные массивы информации извлекая из них суть и т.д. и т.п?

Объясняя этот феномен Карпати ввел термин "jagged intelligence" (зубчатый интеллект). Этот концепт объясняет, почему языковые модели могут превосходить людей в решении сложных задач, но терпят неудачу в простых логических упражнениях.
"Зубчатый интеллект" проявляется в том, что модели демонстрируют выдающиеся результаты в областях, близко совпадающих с их обучающими данными, но показывают неожиданные провалы в задачах, требующих базовой логики или здравого смысла. Например, модель может написать сложное эссе о квантовой физике, но ошибиться в подсчете букв в простом слове.

Причина этого феномена кроется в том, что LLM не обладают истинным "пониманием" задач. Они полагаются на распознавание паттернов, а не на внутреннее осмысление, которым обладают люди. Это ограничение подчеркивает важность понимания того, что современный ИИ представляет собой очень мощный инструмент распознавания паттернов, а не систему общего интеллекта. Так что лучше пользуйтесь этой супер-силой, а не пытайтесь поставить её в тупик задачами на логику из детского сада, в этом нет никакого смысла.

Это серия постов с заблуждениями об ЛЛМ. Предыдущие здесь, здесь, здесь и здесь.

LawCoder

BY LawCoder


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/law_coder/198

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. Some privacy experts say Telegram is not secure enough He adds: "Telegram has become my primary news source." He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war.
from pl


Telegram LawCoder
FROM American