Telegram Group & Telegram Channel
📔 Мы внимательно следим за последними статьями в области ML, и сегодня хотим обратить ваше внимание на модель TabPFN v2 из статьи “Accurate predictions on small data with a tabular foundation model”, опубликованную в январе 2025 года в Nature. Модель работает на табличных данных, первая версия TabPFN была опубликована в октябре 2022, во второй версии помимо классификации появилась регрессия.

💡 Идея TabPFN v2:
В классических алгоритмах для решения suprevised задач на табличных данных модель обучается с нуля, в статье используется подход с предобучением:
1. Генерируются 130 миллионов синтетических датасетов с помощью каузальных графов, которые имитируют сложные зависимости в данных, пропуски, выбросы.
2. На сгенерированных данных предобучается трансформер, предсказывая таргет test выборки, получая на вход train как контекст. Для каждой ячейки таблицы используется отдельная репрезентация. Используется механизм внимания как по строкам, так и по столбцам таблицы.
3. Вместо привычных отдельных "fit" и "predict", трансформер за один проход получая и train, и test новой задачи одновременно, делает инференс на test, используя in-context learning. Простыми словами, модель обучена однажды, но подхватывает зависимости в данных из подаваемого в контекст датасета и сразу делает предсказания.

🥇 Результаты авторов:
1. Скорость и качество: в задачах классификации и регрессии на данных до 10к строк и 500 признаков за несколько секунд получает качество лучше, чем ансамбль из базовых алгоритмов (бустинги, лес, линейные), которые тюнились в течение нескольких часов.
2. Минимум работы: алгоритм не нужно тюнить, имеет отбор признаков, нативно работает с числовыми и категориальными признаками, а также с пропусками.
3. Плюсы foundation моделей: возможность получить распределение таргета, генерировать данные итд.
4. Неплохо показывает себя на временных рядах.

🤔 Выводы:
1. Статья показала эффективность foundation моделей в домене табличных данных, теперь у бустингов сильные конкуренты.
2. Пока есть вопросы с точки зрения эффективности инференса, ограниченности контекста, но дальше будут улучшения.
3. Интересно, что TabPFN v2 можно назвать AutoML решением, ведь для решения задачи он не требует ни настройки гиперпараметров, ни предобработки данных.

Тема интересная, у нас имеются наработки по этой теме, и мы работаем над их применением в LightAutoML🦙, stay tuned!

#обзор
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/lightautoml/182
Create:
Last Update:

📔 Мы внимательно следим за последними статьями в области ML, и сегодня хотим обратить ваше внимание на модель TabPFN v2 из статьи “Accurate predictions on small data with a tabular foundation model”, опубликованную в январе 2025 года в Nature. Модель работает на табличных данных, первая версия TabPFN была опубликована в октябре 2022, во второй версии помимо классификации появилась регрессия.

💡 Идея TabPFN v2:
В классических алгоритмах для решения suprevised задач на табличных данных модель обучается с нуля, в статье используется подход с предобучением:
1. Генерируются 130 миллионов синтетических датасетов с помощью каузальных графов, которые имитируют сложные зависимости в данных, пропуски, выбросы.
2. На сгенерированных данных предобучается трансформер, предсказывая таргет test выборки, получая на вход train как контекст. Для каждой ячейки таблицы используется отдельная репрезентация. Используется механизм внимания как по строкам, так и по столбцам таблицы.
3. Вместо привычных отдельных "fit" и "predict", трансформер за один проход получая и train, и test новой задачи одновременно, делает инференс на test, используя in-context learning. Простыми словами, модель обучена однажды, но подхватывает зависимости в данных из подаваемого в контекст датасета и сразу делает предсказания.

🥇 Результаты авторов:
1. Скорость и качество: в задачах классификации и регрессии на данных до 10к строк и 500 признаков за несколько секунд получает качество лучше, чем ансамбль из базовых алгоритмов (бустинги, лес, линейные), которые тюнились в течение нескольких часов.
2. Минимум работы: алгоритм не нужно тюнить, имеет отбор признаков, нативно работает с числовыми и категориальными признаками, а также с пропусками.
3. Плюсы foundation моделей: возможность получить распределение таргета, генерировать данные итд.
4. Неплохо показывает себя на временных рядах.

🤔 Выводы:
1. Статья показала эффективность foundation моделей в домене табличных данных, теперь у бустингов сильные конкуренты.
2. Пока есть вопросы с точки зрения эффективности инференса, ограниченности контекста, но дальше будут улучшения.
3. Интересно, что TabPFN v2 можно назвать AutoML решением, ведь для решения задачи он не требует ни настройки гиперпараметров, ни предобработки данных.

Тема интересная, у нас имеются наработки по этой теме, и мы работаем над их применением в LightAutoML🦙, stay tuned!

#обзор

BY LightAutoML framework




Share with your friend now:
group-telegram.com/lightautoml/182

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. Anastasia Vlasova/Getty Images Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news. In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback.
from pl


Telegram LightAutoML framework
FROM American