Telegram Group & Telegram Channel
🤖 Почему модели лучше отвечают на вопросы по тексту, чем по изображениям — и как это исправить?

Vision-Language модели (VLMs) сильно хуже справляются с вопросами про картинки (*«Сколько книг на изображении?»*), чем с теми же вопросами по тексту (*«Сколько книг в описании?»*). И нашли способ улучшить результат на +4.6%, закрыв треть разрыва между модальностями! Вот что они сделали 👇

🔬 Они разделили вход на три части:
Данные (изображение или текст),
Вопрос (*how many…*),
Ответ (предсказание последнего слова).

🧠 Что нашли:

1️⃣ Мозги у модели разные для текста и картинок — цепочки внимания и нейроны почти не совпадают (всего ~18%). Особенно в частях, где обрабатываются данные и вопрос.

2️⃣ Часть, отвечающая за генерацию ответа, похожа — можно даже подменить её между модальностями, и модель почти не теряет в точности.

3️⃣ Часть, которая "смотрит" на данные — строго модальная. Визуальный поток информации идёт по другому пути, и замена разрушает результат.

4️⃣ Проблема в том, что изображение “становится понятным” слишком поздно. В поздних слоях визуальные данные уже похожи на текстовые — но модель не успевает этим воспользоваться.

💡 Решение: "перемотать" визуальные данные из поздних слоёв обратно в ранние (back-patching) — это помогает модели раньше "понять" картинку.

📈 Результат: +4.6% точности при ответах на вопросы по изображению — и треть разрыва с текстом закрыта!

🧩 Вывод: архитектура не виновата. Просто визуальные данные нужно правильно "подать" — и VLM начинает думать почти как человек.

🔜 Читать статью полностью

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/machinelearning_interview/1850
Create:
Last Update:

🤖 Почему модели лучше отвечают на вопросы по тексту, чем по изображениям — и как это исправить?

Vision-Language модели (VLMs) сильно хуже справляются с вопросами про картинки (*«Сколько книг на изображении?»*), чем с теми же вопросами по тексту (*«Сколько книг в описании?»*). И нашли способ улучшить результат на +4.6%, закрыв треть разрыва между модальностями! Вот что они сделали 👇

🔬 Они разделили вход на три части:
Данные (изображение или текст),
Вопрос (*how many…*),
Ответ (предсказание последнего слова).

🧠 Что нашли:

1️⃣ Мозги у модели разные для текста и картинок — цепочки внимания и нейроны почти не совпадают (всего ~18%). Особенно в частях, где обрабатываются данные и вопрос.

2️⃣ Часть, отвечающая за генерацию ответа, похожа — можно даже подменить её между модальностями, и модель почти не теряет в точности.

3️⃣ Часть, которая "смотрит" на данные — строго модальная. Визуальный поток информации идёт по другому пути, и замена разрушает результат.

4️⃣ Проблема в том, что изображение “становится понятным” слишком поздно. В поздних слоях визуальные данные уже похожи на текстовые — но модель не успевает этим воспользоваться.

💡 Решение: "перемотать" визуальные данные из поздних слоёв обратно в ранние (back-patching) — это помогает модели раньше "понять" картинку.

📈 Результат: +4.6% точности при ответах на вопросы по изображению — и треть разрыва с текстом закрыта!

🧩 Вывод: архитектура не виновата. Просто визуальные данные нужно правильно "подать" — и VLM начинает думать почти как человек.

🔜 Читать статью полностью

@machinelearning_interview

BY Machine learning Interview








Share with your friend now:
group-telegram.com/machinelearning_interview/1850

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare.
from pl


Telegram Machine learning Interview
FROM American