Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/tech_priestess/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Техножрица 👩‍💻👩‍🏫👩‍🔧 | Telegram Webview: tech_priestess/2047 -
Telegram Group & Telegram Channel
🎉 Тем временем, мы с коллегами выложили на arXiv новый 4-страничный препринт про применение Sparse AutoEncoders (SAE, разреженные автоэнкодеры) для детекции искусственно сгенерированных текстов 🎉 (чтобы подробно разобраться, как работают SAE, можно начать, например, отсюда: https://transformer-circuits.pub/2022/toy_model/index.html ; если же говорить вкратце, SAE - это один из способов извлечь более "распутанные" и интерпретируемые фичи из эмбеддингов LLM-ки). В процессе работы над исследованием к моим постоянным соавторам присоединились два новых: Антон ( https://www.group-telegram.com/abstractDL ) и его коллега Полина, которые очень помогли с экспериментами и текстом на финальных стадиях!

Сама же работа называется "Feature-Level Insights into Artificial Text Detection with Sparse Autoencoders" ( https://arxiv.org/abs/2503.03601 ) 🤓 и заключается в следующем:

Мы взяли модель Gemma-2-2B, навесили на нее предобученный SAE (gemmascope-res-16k) и начали подавать на вход различные LLM-сгенерированные тексты. Далее мы:

а) Детектировали LLM-генерацию по фичам SAE (интересно, что качество такой детекции оказалось лучше, чем детекции по оригинальным эмбеддингам Gemma!);
б) Отобрали 20 наиболее важных для детекции фичей с помощью бустинга и проанализировали их смысл, чтобы разобраться, какие именно отличия человеческих текстов и LLM-сгенерированных были "пойманы" этими фичами.

Анализ фичей проводился тремя основными способами: ручной интерпретацией (вручную смотрели, чем отличаются те тексты, на которых значение фичи низкое, от тех, на которых оно высокое), авто-интерпретацией (то же самое делала LLMка) и steering-ом. В последнем способе, в отличие от предыдущих, мы подавали на вход Gemma-2-2B не весь пример из датасета, а только промпт. Продолжение же мы генерировали с помощью самой Gemma-2-2B и при этом вектор, соответствующий выбранной фиче в эмбеддинге модели искусственно увеличивали или уменьшали, чтобы посмотреть, как это влияет на результат генерации. Далее GPT-4o автоматически интерпретировала, чем тексты, сгенерированные при уменьшенном значении нужного вектора, отличаются от текстов, сгенерированных при увеличенном значении (также про steering см. посты https://www.group-telegram.com/pl/tech_priestess.com/1966 и https://www.group-telegram.com/pl/tech_priestess.com/1967 ).

Результаты интерпретации в целом вполне соответствуют тем интуитивным представлением о сгенерированных текстах, которое обычно формируется у людей, которые часто пользуются LLMками (см. https://www.group-telegram.com/abstractDL/320 ): согласно нашему анализу, сгенерированные тексты чаще оказывались водянистыми, заумными, чрезмерно формальными, чрезмерно самоуверенными, а также чаще содержали повторения, чем человеческие тексты. Также мы описали несколько легко интерпретируемых признаков сгенерированности для отдельных доменов и моделей и другие наблюдения (о которых подробнее можно почитать в тексте самого препринта).

#объяснения_статей
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/tech_priestess/2047
Create:
Last Update:

🎉 Тем временем, мы с коллегами выложили на arXiv новый 4-страничный препринт про применение Sparse AutoEncoders (SAE, разреженные автоэнкодеры) для детекции искусственно сгенерированных текстов 🎉 (чтобы подробно разобраться, как работают SAE, можно начать, например, отсюда: https://transformer-circuits.pub/2022/toy_model/index.html ; если же говорить вкратце, SAE - это один из способов извлечь более "распутанные" и интерпретируемые фичи из эмбеддингов LLM-ки). В процессе работы над исследованием к моим постоянным соавторам присоединились два новых: Антон ( https://www.group-telegram.com/abstractDL ) и его коллега Полина, которые очень помогли с экспериментами и текстом на финальных стадиях!

Сама же работа называется "Feature-Level Insights into Artificial Text Detection with Sparse Autoencoders" ( https://arxiv.org/abs/2503.03601 ) 🤓 и заключается в следующем:

Мы взяли модель Gemma-2-2B, навесили на нее предобученный SAE (gemmascope-res-16k) и начали подавать на вход различные LLM-сгенерированные тексты. Далее мы:

а) Детектировали LLM-генерацию по фичам SAE (интересно, что качество такой детекции оказалось лучше, чем детекции по оригинальным эмбеддингам Gemma!);
б) Отобрали 20 наиболее важных для детекции фичей с помощью бустинга и проанализировали их смысл, чтобы разобраться, какие именно отличия человеческих текстов и LLM-сгенерированных были "пойманы" этими фичами.

Анализ фичей проводился тремя основными способами: ручной интерпретацией (вручную смотрели, чем отличаются те тексты, на которых значение фичи низкое, от тех, на которых оно высокое), авто-интерпретацией (то же самое делала LLMка) и steering-ом. В последнем способе, в отличие от предыдущих, мы подавали на вход Gemma-2-2B не весь пример из датасета, а только промпт. Продолжение же мы генерировали с помощью самой Gemma-2-2B и при этом вектор, соответствующий выбранной фиче в эмбеддинге модели искусственно увеличивали или уменьшали, чтобы посмотреть, как это влияет на результат генерации. Далее GPT-4o автоматически интерпретировала, чем тексты, сгенерированные при уменьшенном значении нужного вектора, отличаются от текстов, сгенерированных при увеличенном значении (также про steering см. посты https://www.group-telegram.com/pl/tech_priestess.com/1966 и https://www.group-telegram.com/pl/tech_priestess.com/1967 ).

Результаты интерпретации в целом вполне соответствуют тем интуитивным представлением о сгенерированных текстах, которое обычно формируется у людей, которые часто пользуются LLMками (см. https://www.group-telegram.com/abstractDL/320 ): согласно нашему анализу, сгенерированные тексты чаще оказывались водянистыми, заумными, чрезмерно формальными, чрезмерно самоуверенными, а также чаще содержали повторения, чем человеческие тексты. Также мы описали несколько легко интерпретируемых признаков сгенерированности для отдельных доменов и моделей и другие наблюдения (о которых подробнее можно почитать в тексте самого препринта).

#объяснения_статей

BY Техножрица 👩‍💻👩‍🏫👩‍🔧




Share with your friend now:
group-telegram.com/tech_priestess/2047

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge.
from pl


Telegram Техножрица 👩‍💻👩‍🏫👩‍🔧
FROM American