RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
#rag
Сегодня продолжу развивать тему RAG, поэтому подготовил для вас разбор свежей статьи RAPTOR. Этот подход устраняет проблему, когда LLM задают тематические вопросы, требующие полного знания целого документа или даже нескольких. Примером такого запроса может быть "Как именно князь Гвидон достиг своего могущества?". Любая система RAG извлечет множество релевантных фрагментов текста по данному запросу, однако они не дадут полной картины, потому что для этого нужно знать все содержание книги. И мы получаем проблему - чем больше фрагментов текста вы включаете в запрос, тем меньше вам нужен RAG.
Что же делает RAPTOR?🦖
Вместо разделения документов на маленькие фрагменты и сохранения их в векторную БД для последующего извлечения, RAPTOR сначала их кластеризует, а после суммаризует каждый кластер с помощью LLM. Он повторяет этот процесс итерационно, пока не остается один, финальный фрагмент текста, в котором содержится вся информация документа. Все это извлекается в общих чертах с готовой суммаризированной информацией, а если необходимы факты, то можно опуститься на слой ниже и извлечь более детальное summary.
RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
#rag
Сегодня продолжу развивать тему RAG, поэтому подготовил для вас разбор свежей статьи RAPTOR. Этот подход устраняет проблему, когда LLM задают тематические вопросы, требующие полного знания целого документа или даже нескольких. Примером такого запроса может быть "Как именно князь Гвидон достиг своего могущества?". Любая система RAG извлечет множество релевантных фрагментов текста по данному запросу, однако они не дадут полной картины, потому что для этого нужно знать все содержание книги. И мы получаем проблему - чем больше фрагментов текста вы включаете в запрос, тем меньше вам нужен RAG.
Что же делает RAPTOR?🦖
Вместо разделения документов на маленькие фрагменты и сохранения их в векторную БД для последующего извлечения, RAPTOR сначала их кластеризует, а после суммаризует каждый кластер с помощью LLM. Он повторяет этот процесс итерационно, пока не остается один, финальный фрагмент текста, в котором содержится вся информация документа. Все это извлекается в общих чертах с готовой суммаризированной информацией, а если необходимы факты, то можно опуститься на слой ниже и извлечь более детальное summary.
Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. "There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats.
from ru