Telegram Group & Telegram Channel
Forwarded from Machinelearning
📕 Андрей Карпаты опубликовал новый пост- необычный путь распространения LLM, их влияние на людей и организации, причины разрыва и взгляд в будущее.

В нем он анализирует необычное распространение больших языковых моделей (LLM).

Вот его содержание:
В отличие от традиционных технологий, которые обычно проходят путь от государственных и военных структур через корпорации к индивидуальным пользователям, LLM сразу стали широко доступны обычным людям.

Это позволило моделям значительно расширить свои возможности в таких областях, как программирование, анализ данных и создание контента, без необходимости привлекать узких специалистов.

ChatGPT — самое быстрорастущее приложение в истории, у него 400 миллионов активных пользователей в неделю.

Люди используют его для написания текстов, программирования, перевода, обучения, анализа, исследований и генерации идей

Это не просто улучшение жизни— это мощный бустер возможностей человека.

И барьер для входа использования LLM невероятно низкий: модели бесплатны или дешевы, быстры, доступны всем через API или локально, и говорят на любом языке, включая сленг и эмодзи.

Никогда еще человек не получал такого технологического скачка так быстро.

Почему же эффект для корпораций и государственных институтов не такой весомый?

Во-первых, LLM дают "квази-экспертные" знания: широкие, но неглубокие и ненадежные. Для организаций, где уже есть эксперты (инженеры, юристы, аналитики), это лишь слегка повышает эффективность.

А вот для человека, который обычно эксперт лишь в одном, LLM открывают новые горизонты: программировать, разбираться в юриспруденции, анализировать данные или создавать контент — все это теперь возможно без посторонней помощи.

Во-вторых, организации решают более сложные задачи: интеграции, устаревшие системы, безопасность, регуляции, координация.

Ошибки LLM тут куда опаснее — "вайб кодить" не выйдет.

В-третьих, есть инерция: бюрократия, культура компаний, переобучение — все это тормозит внедрение.

Пока LLM радикально меняют жизнь людей, а не организаций.

Мэри, Джим и Джо получают больше, чем Google или правительство США. Но что дальше? Если топовые модели станут сильно дороже и лучше, крупные игроки смогут "купить интеллект", и элита снова уйдет в отрыв.

Сегодня Билл Гейтс использует тот же GPT-4o, что и вы, но завтра его ребенок может учиться у GPT-8-pro-max, а ваш — у GPT-6-mini.

Сейчас мы находимся в уникальном моменте: будущее уже здесь, и технологии удивительно равномерно распределены. Будущее тут, и оно доступно для всех. Власть людям!

🔗 Оригинал

@ai_machinelearning_big_data

#AndrejKarpathy #influencer



group-telegram.com/machinelearning_interview/1705
Create:
Last Update:

📕 Андрей Карпаты опубликовал новый пост- необычный путь распространения LLM, их влияние на людей и организации, причины разрыва и взгляд в будущее.

В нем он анализирует необычное распространение больших языковых моделей (LLM).

Вот его содержание:
В отличие от традиционных технологий, которые обычно проходят путь от государственных и военных структур через корпорации к индивидуальным пользователям, LLM сразу стали широко доступны обычным людям.

Это позволило моделям значительно расширить свои возможности в таких областях, как программирование, анализ данных и создание контента, без необходимости привлекать узких специалистов.

ChatGPT — самое быстрорастущее приложение в истории, у него 400 миллионов активных пользователей в неделю.

Люди используют его для написания текстов, программирования, перевода, обучения, анализа, исследований и генерации идей

Это не просто улучшение жизни— это мощный бустер возможностей человека.

И барьер для входа использования LLM невероятно низкий: модели бесплатны или дешевы, быстры, доступны всем через API или локально, и говорят на любом языке, включая сленг и эмодзи.

Никогда еще человек не получал такого технологического скачка так быстро.

Почему же эффект для корпораций и государственных институтов не такой весомый?

Во-первых, LLM дают "квази-экспертные" знания: широкие, но неглубокие и ненадежные. Для организаций, где уже есть эксперты (инженеры, юристы, аналитики), это лишь слегка повышает эффективность.

А вот для человека, который обычно эксперт лишь в одном, LLM открывают новые горизонты: программировать, разбираться в юриспруденции, анализировать данные или создавать контент — все это теперь возможно без посторонней помощи.

Во-вторых, организации решают более сложные задачи: интеграции, устаревшие системы, безопасность, регуляции, координация.

Ошибки LLM тут куда опаснее — "вайб кодить" не выйдет.

В-третьих, есть инерция: бюрократия, культура компаний, переобучение — все это тормозит внедрение.

Пока LLM радикально меняют жизнь людей, а не организаций.

Мэри, Джим и Джо получают больше, чем Google или правительство США. Но что дальше? Если топовые модели станут сильно дороже и лучше, крупные игроки смогут "купить интеллект", и элита снова уйдет в отрыв.

Сегодня Билл Гейтс использует тот же GPT-4o, что и вы, но завтра его ребенок может учиться у GPT-8-pro-max, а ваш — у GPT-6-mini.

Сейчас мы находимся в уникальном моменте: будущее уже здесь, и технологии удивительно равномерно распределены. Будущее тут, и оно доступно для всех. Власть людям!

🔗 Оригинал

@ai_machinelearning_big_data

#AndrejKarpathy #influencer

BY Machine learning Interview




Share with your friend now:
group-telegram.com/machinelearning_interview/1705

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. False news often spreads via public groups, or chats, with potentially fatal effects. Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised.
from ru


Telegram Machine learning Interview
FROM American