Telegram Group & Telegram Channel
🧩 Задача для продвинутых дата-сайентистов: "Парадоксальная корреляция"

📖 Описание задачи

У вас есть DataFrame df с данными о рекламных кампаниях:


import pandas as pd

data = {
'campaign_id': [1, 2, 3, 4, 5, 6],
'spend': [1000, 1500, 1200, None, 2000, 1700],
'revenue': [2000, 2300, 2500, 1800, None, 2700]
}

df = pd.DataFrame(data)
print(df)


Результат:


campaign_id spend revenue
0 1 1000.0 2000.0
1 2 1500.0 2300.0
2 3 1200.0 2500.0
3 4 NaN 1800.0
4 5 2000.0 NaN
5 6 1700.0 2700.0


Вам нужно посчитать корреляцию между spend и revenue.

Вы пишете:


correlation = df['spend'].corr(df['revenue'])
print(correlation)


И получаете:


nan


❗️Но вы уверены, что данные связаны (чем больше spend, тем больше revenue), а Pandas возвращает NaN.

📝 Ваша задача:

1. Почему Pandas возвращает NaN?
2. Как правильно посчитать корреляцию?
3. Как бы вы обработали такие данные в продакшн-пайплайне?

---

🎯 Подвох (ключевой момент):

Метод corr() автоматически игнорирует строки, где хотя бы одно значение NaN.

В этом DataFrame остаются только строки с индексами 0, 1, 2, 5.
→ На этих данных корреляция может быть рассчитана.

Но главная проблема — тип данных.

Если данные были считаны, например, из CSV, где пустые значения остались строками, то Pandas определит колонку как object, а не float64:


print(df.dtypes)


Вывод:


spend object
revenue object


И тогда corr() вернёт NaN, потому что не смог интерпретировать данные как числовые.

---

💡 Решение:

1. Проверить типы данных:

```python
print(df.dtypes)
```

2. Привести к числовому типу:

```python
df['spend'] = pd.to_numeric(df['spend'], errors='coerce')
df['revenue'] = pd.to_numeric(df['revenue'], errors='coerce')
```

3. Посчитать корреляцию без NaN:

```python
correlation = df[['spend', 'revenue']].dropna().corr().iloc[0, 1]
print(correlation)
```

Теперь корреляция рассчитана корректно.

---

🔥 Дополнительный подвох:

А что если CSV-файл считан с
delimiter=';', а данные внутри разделены запятыми?
→ Тогда весь DataFrame будет одной колонкой с типом object, а Pandas не сможет даже начать обработку.

---

📝 Что проверяет задача:

Понимание, как Pandas обрабатывает NaN и object
Внимательность к типам данных
Умение находить ошибки при чтении и парсинге данных
Опыт очистки и предобработки грязных данных

🔥 Отличная проверка на внимательность и глубину работы с Pandas!



group-telegram.com/machinelearning_interview/1787
Create:
Last Update:

🧩 Задача для продвинутых дата-сайентистов: "Парадоксальная корреляция"

📖 Описание задачи

У вас есть DataFrame df с данными о рекламных кампаниях:


import pandas as pd

data = {
'campaign_id': [1, 2, 3, 4, 5, 6],
'spend': [1000, 1500, 1200, None, 2000, 1700],
'revenue': [2000, 2300, 2500, 1800, None, 2700]
}

df = pd.DataFrame(data)
print(df)


Результат:


campaign_id spend revenue
0 1 1000.0 2000.0
1 2 1500.0 2300.0
2 3 1200.0 2500.0
3 4 NaN 1800.0
4 5 2000.0 NaN
5 6 1700.0 2700.0


Вам нужно посчитать корреляцию между spend и revenue.

Вы пишете:


correlation = df['spend'].corr(df['revenue'])
print(correlation)


И получаете:


nan


❗️Но вы уверены, что данные связаны (чем больше spend, тем больше revenue), а Pandas возвращает NaN.

📝 Ваша задача:

1. Почему Pandas возвращает NaN?
2. Как правильно посчитать корреляцию?
3. Как бы вы обработали такие данные в продакшн-пайплайне?

---

🎯 Подвох (ключевой момент):

Метод corr() автоматически игнорирует строки, где хотя бы одно значение NaN.

В этом DataFrame остаются только строки с индексами 0, 1, 2, 5.
→ На этих данных корреляция может быть рассчитана.

Но главная проблема — тип данных.

Если данные были считаны, например, из CSV, где пустые значения остались строками, то Pandas определит колонку как object, а не float64:


print(df.dtypes)


Вывод:


spend object
revenue object


И тогда corr() вернёт NaN, потому что не смог интерпретировать данные как числовые.

---

💡 Решение:

1. Проверить типы данных:

```python
print(df.dtypes)
```

2. Привести к числовому типу:

```python
df['spend'] = pd.to_numeric(df['spend'], errors='coerce')
df['revenue'] = pd.to_numeric(df['revenue'], errors='coerce')
```

3. Посчитать корреляцию без NaN:

```python
correlation = df[['spend', 'revenue']].dropna().corr().iloc[0, 1]
print(correlation)
```

Теперь корреляция рассчитана корректно.

---

🔥 Дополнительный подвох:

А что если CSV-файл считан с
delimiter=';', а данные внутри разделены запятыми?
→ Тогда весь DataFrame будет одной колонкой с типом object, а Pandas не сможет даже начать обработку.

---

📝 Что проверяет задача:

Понимание, как Pandas обрабатывает NaN и object
Внимательность к типам данных
Умение находить ошибки при чтении и парсинге данных
Опыт очистки и предобработки грязных данных

🔥 Отличная проверка на внимательность и глубину работы с Pandas!

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/machinelearning_interview/1787

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

READ MORE Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30.
from ru


Telegram Machine learning Interview
FROM American