Telegram Group & Telegram Channel
🧠 Одна из лучших вещей, которую можно прочитать, чтобы понять PPO (Proximal Policy Optimization)

Как правильно реализовать PPO? 37 деталей, которые почти никто не указывает

Полезное чтиво Исследователи из ICLR собрали 37 практических нюансов, без которых реализация Proximal Policy Optimization (PPO) часто оказывается нестабильной или неэффективной.

🔧 В статье разобраны:
• 13 базовых деталей — без них PPO просто не будет работать стабильно
• 9 дополнительных при работе с изображениями (например, Atari)
• 9 нюансов для задач с непрерывным действием (робототехника и физика)
• 6 универсальных оптимизаций, улучшающих сходимость и результат

💡 Примеры включают:
– обработку rewards перед обучением
– правильное использование GAE
– нормализацию входных данных
– трюки с масштабированием advantages
– обработку градиентов и dropout

📌 Почему это важно:
Эти детали влияют на производительность и стабильность PPO, но почти всегда остаются "между строк" в статьях и туториалах. Без них модель может "учиться", но не достигать ожидаемых результатов.

🔗 Оригинальный разбор + код: https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

#ReinforcementLearning #PPO #RL #DeepLearning #ICLR
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/machinelearning_interview/1840
Create:
Last Update:

🧠 Одна из лучших вещей, которую можно прочитать, чтобы понять PPO (Proximal Policy Optimization)

Как правильно реализовать PPO? 37 деталей, которые почти никто не указывает

Полезное чтиво Исследователи из ICLR собрали 37 практических нюансов, без которых реализация Proximal Policy Optimization (PPO) часто оказывается нестабильной или неэффективной.

🔧 В статье разобраны:
• 13 базовых деталей — без них PPO просто не будет работать стабильно
• 9 дополнительных при работе с изображениями (например, Atari)
• 9 нюансов для задач с непрерывным действием (робототехника и физика)
• 6 универсальных оптимизаций, улучшающих сходимость и результат

💡 Примеры включают:
– обработку rewards перед обучением
– правильное использование GAE
– нормализацию входных данных
– трюки с масштабированием advantages
– обработку градиентов и dropout

📌 Почему это важно:
Эти детали влияют на производительность и стабильность PPO, но почти всегда остаются "между строк" в статьях и туториалах. Без них модель может "учиться", но не достигать ожидаемых результатов.

🔗 Оригинальный разбор + код: https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

#ReinforcementLearning #PPO #RL #DeepLearning #ICLR

BY Machine learning Interview




Share with your friend now:
group-telegram.com/machinelearning_interview/1840

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. Despite Telegram's origins, its approach to users' security has privacy advocates worried. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram.
from ru


Telegram Machine learning Interview
FROM American