Telegram Group & Telegram Channel
Tasty AI Papers | 01-31 August 2024

Robotics.

πŸ”˜Body Transformer: Leveraging Robot Embodiment for Policy Learning

what: one transformer to control whole body.
- propose Body Transformer (BoT)
- vanilla transformer with special attention mask, which reflects interconnection of the different body parts.

πŸ”˜CrossFormer Scaling Cross-Embodied Learning for Manipulation, Navigation, Locomotion, and Aviation

what: One transformer that can control various robot types.
- trained on 900K trajectories from 20 different robots.
- matches or beats specialized algorithms for each robot type.
- works on arms, wheeled bots, quadrupeds, and even drones.

Diffusion + AR Transformers

🟒Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model

what: merge AR decoder with vanilla diffusion.
- train model with two objectives: causal language loss + diffusion objective
- deal with discrete and continuous in the same model.

🟑 Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution

what: propose diffusion for discrete distribution
- beats other diffusion approach for text generation
- outperforms gpt-2.

🟑Show-o: One Single Transformer to Unify Multimodal Understanding and Generation

what: combine AR transformer with MaskGIT.
- can generate image and understand them.
- text tokenization + image tokenization. Use MaskGIT losses for image tokens.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/neural_cell/179
Create:
Last Update:

Tasty AI Papers | 01-31 August 2024

Robotics.

πŸ”˜Body Transformer: Leveraging Robot Embodiment for Policy Learning

what: one transformer to control whole body.
- propose Body Transformer (BoT)
- vanilla transformer with special attention mask, which reflects interconnection of the different body parts.

πŸ”˜CrossFormer Scaling Cross-Embodied Learning for Manipulation, Navigation, Locomotion, and Aviation

what: One transformer that can control various robot types.
- trained on 900K trajectories from 20 different robots.
- matches or beats specialized algorithms for each robot type.
- works on arms, wheeled bots, quadrupeds, and even drones.

Diffusion + AR Transformers

🟒Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model

what: merge AR decoder with vanilla diffusion.
- train model with two objectives: causal language loss + diffusion objective
- deal with discrete and continuous in the same model.

🟑 Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution

what: propose diffusion for discrete distribution
- beats other diffusion approach for text generation
- outperforms gpt-2.

🟑Show-o: One Single Transformer to Unify Multimodal Understanding and Generation

what: combine AR transformer with MaskGIT.
- can generate image and understand them.
- text tokenization + image tokenization. Use MaskGIT losses for image tokens.

BY the last neural cell




Share with your friend now:
group-telegram.com/neural_cell/179

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." "Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted.
from ru


Telegram the last neural cell
FROM American