Telegram Group & Telegram Channel
Рубрика "мои кенты - мое богатство". 👬

Я обещал написать про быстрый инференс, и вот подвернулся случай. У меня есть два предпочтения, которым я предпочитаю следовать в дизайне инференс-сервисов:
- никаких динамических графов, все должно быть сконвертировано в ONNX, даже легкие scikit-learn модели, и потом гоняться в ONNXRuntime. Это и минимизирует ошибки с одной стороны, и позволяет дешево сменить core model, да и запускать можно одинаково хоть локально, хоть на сервере, только бэкенд подмени;
- если можно что-то вынести на serverless (например, в AWS Lambda), надо выносить - это простой способ сглаживать нагрузку.

У лямбд есть несколько проблем:
- неидеальное масштабирование (с нуля до многих тысяч параллельных запусков мгновенно не вырастешь, что бы там ни говорили маркетинговые описания);
- медленный cold start (в эту сторону есть подвижки);
- нет GPU, и потому инференс жирных моделей скорее затруднителен, да и экономически не очень выгоден.

Так вот, мои старые кореша Андрей и Игорь решили починить одну из этих проблем и пилят платформу everinfer.ai, которая прям соответствует моим представлениям о прекрасном:

from everinfer import Client

client = Client('my_secret_key')
pipeline = client.register_pipeline('my_model_name', ['onnx/model.onnx'])
runner = client.create_engine(pipeline['uuid'])
preds = runner.predict([inputs])

Внутри ONNXRuntime, Rust 🦀, ScyllaDB и прочие модные технологии, благодаря чему инференс получается довольно быстрым. Слегка потестировал, получилось чуть быстрее локального запуска ONNXRuntime на CPU, даже с учетом сетевых издержек.

Платформа только-только открывается для внешних пользователей и предлагает первым тестерам бесплатное железо для инференса и помощь в запуске (хотя API простой как табуретка, вряд ли понадобится много помощи). Можете писать сразу @andrey_kiselev и просить доступ.



group-telegram.com/partially_unsupervised/178
Create:
Last Update:

Рубрика "мои кенты - мое богатство". 👬

Я обещал написать про быстрый инференс, и вот подвернулся случай. У меня есть два предпочтения, которым я предпочитаю следовать в дизайне инференс-сервисов:
- никаких динамических графов, все должно быть сконвертировано в ONNX, даже легкие scikit-learn модели, и потом гоняться в ONNXRuntime. Это и минимизирует ошибки с одной стороны, и позволяет дешево сменить core model, да и запускать можно одинаково хоть локально, хоть на сервере, только бэкенд подмени;
- если можно что-то вынести на serverless (например, в AWS Lambda), надо выносить - это простой способ сглаживать нагрузку.

У лямбд есть несколько проблем:
- неидеальное масштабирование (с нуля до многих тысяч параллельных запусков мгновенно не вырастешь, что бы там ни говорили маркетинговые описания);
- медленный cold start (в эту сторону есть подвижки);
- нет GPU, и потому инференс жирных моделей скорее затруднителен, да и экономически не очень выгоден.

Так вот, мои старые кореша Андрей и Игорь решили починить одну из этих проблем и пилят платформу everinfer.ai, которая прям соответствует моим представлениям о прекрасном:

from everinfer import Client

client = Client('my_secret_key')
pipeline = client.register_pipeline('my_model_name', ['onnx/model.onnx'])
runner = client.create_engine(pipeline['uuid'])
preds = runner.predict([inputs])

Внутри ONNXRuntime, Rust 🦀, ScyllaDB и прочие модные технологии, благодаря чему инференс получается довольно быстрым. Слегка потестировал, получилось чуть быстрее локального запуска ONNXRuntime на CPU, даже с учетом сетевых издержек.

Платформа только-только открывается для внешних пользователей и предлагает первым тестерам бесплатное железо для инференса и помощь в запуске (хотя API простой как табуретка, вряд ли понадобится много помощи). Можете писать сразу @andrey_kiselev и просить доступ.

BY partially unsupervised


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/partially_unsupervised/178

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of these scams will create a public group on Telegram to promote these investment packages that are usually accompanied by fake testimonies and sometimes advertised as being Shariah-compliant. Interested investors will be asked to directly message the representatives to begin investing in the various investment packages offered. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. He adds: "Telegram has become my primary news source." In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.”
from ru


Telegram partially unsupervised
FROM American