Telegram Group & Telegram Channel
🔴تولید حالت های GKP با استفاده از نمونه‌برداری بوزونی گاوسی


در مقاله جدید شرکت زانادو روش جدیدی را برای تولید
حالات کیوبیت Gottesman-Kitaev-Preskill (GKP) در معماری فوتونی معرفی شده است که به عنوان یکی از امیدوارکننده‌ترین روش‌ها برای کامپیوترهای کوانتومی مقاوم در برابر خطا شناخته می‌شود

برای این کار تراشه فوتونیک بر پایه نیترید سیلیکون با اتلاف نوری بسیار کم استفاده شده است تا حالت‌های کیوبیت GKP را با روش نمونه‌گیری بوزونی گاوسی (GBS) تولید کند. برای اندازه‌گیری و شناسایی این حالات از آشکارسازهای پیشرفته PNR استفاده شده است.

🔶ویژگی‌های کلیدی حالت‌های GKP تولید شده

- چهار پیک قابل تفکیک در هر دو
فضای q و p (مکان و تکانه)
- ساختار مشخصی در تابع Wigner شامل شبکه‌ای 3×3 از نواحی منفی
- مقاومت طبیعی در برابر خطاهای گاوسی از جمله خطاهای ناشی از اتلاف نوری
- امکان اجرای عملیات کلیفورد به‌طور قطعی و بدون نیاز به محیط‌های کرایوجنیک
- احتمال ایجاد کیوبیت‌های مقاوم در برابر خطا با کاهش بیشتر اتلاف نوری

🟥روش انجام آزمایش
1. تولید چهار حالت فشرده‌شده تک‌مدی با استفاده از بستر فوتونیکی
2. ایجاد درهم‌تنیدگی بین این حالت‌ها از طریق تداخل نوری خطی
3. آشکارسازی سه مد خروجی با آشکارسازهای حساس به تعداد فوتون‌ها (PNR)
4. توموگرافی حالت کوانتومی از طریق آشکارسازی هومود
این
5. تایید ویژگی‌های شبکه‌ای و مقاومت در برابر خطا با تحلیل توابع Wigner و میانگین تثبیت‌کننده‌ها

🔷نتایج آزمایش
محققان موفق شدند حالت‌های GKP تولید کنند که برخی از ویژگی‌های اساسی برای تحمل خطا را دارند. با کاهش بیشتر اتلاف نوری، این سیستم می‌تواند حالت‌هایی تولید کند که برای کامپیوترهای کوانتومی مقاوم در برابر خطا مناسب باشند.

نمودارهای عملکردی در مقاله نشان می‌دهند که اگر بازده نوری به بیش از 99.5% برسد، سیستم می‌تواند حالت‌هایی تولید کند که به‌طور نظری برای اجرای محاسبات کوانتومی مقاوم در برابر خطا کافی باشند.


🆔 @QuantumProgramming
🆔 http://instagram.com/Quantum.Programming



group-telegram.com/QuantumProgramming/619
Create:
Last Update:

🔴تولید حالت های GKP با استفاده از نمونه‌برداری بوزونی گاوسی


در مقاله جدید شرکت زانادو روش جدیدی را برای تولید
حالات کیوبیت Gottesman-Kitaev-Preskill (GKP) در معماری فوتونی معرفی شده است که به عنوان یکی از امیدوارکننده‌ترین روش‌ها برای کامپیوترهای کوانتومی مقاوم در برابر خطا شناخته می‌شود

برای این کار تراشه فوتونیک بر پایه نیترید سیلیکون با اتلاف نوری بسیار کم استفاده شده است تا حالت‌های کیوبیت GKP را با روش نمونه‌گیری بوزونی گاوسی (GBS) تولید کند. برای اندازه‌گیری و شناسایی این حالات از آشکارسازهای پیشرفته PNR استفاده شده است.

🔶ویژگی‌های کلیدی حالت‌های GKP تولید شده

- چهار پیک قابل تفکیک در هر دو
فضای q و p (مکان و تکانه)
- ساختار مشخصی در تابع Wigner شامل شبکه‌ای 3×3 از نواحی منفی
- مقاومت طبیعی در برابر خطاهای گاوسی از جمله خطاهای ناشی از اتلاف نوری
- امکان اجرای عملیات کلیفورد به‌طور قطعی و بدون نیاز به محیط‌های کرایوجنیک
- احتمال ایجاد کیوبیت‌های مقاوم در برابر خطا با کاهش بیشتر اتلاف نوری

🟥روش انجام آزمایش
1. تولید چهار حالت فشرده‌شده تک‌مدی با استفاده از بستر فوتونیکی
2. ایجاد درهم‌تنیدگی بین این حالت‌ها از طریق تداخل نوری خطی
3. آشکارسازی سه مد خروجی با آشکارسازهای حساس به تعداد فوتون‌ها (PNR)
4. توموگرافی حالت کوانتومی از طریق آشکارسازی هومود
این
5. تایید ویژگی‌های شبکه‌ای و مقاومت در برابر خطا با تحلیل توابع Wigner و میانگین تثبیت‌کننده‌ها

🔷نتایج آزمایش
محققان موفق شدند حالت‌های GKP تولید کنند که برخی از ویژگی‌های اساسی برای تحمل خطا را دارند. با کاهش بیشتر اتلاف نوری، این سیستم می‌تواند حالت‌هایی تولید کند که برای کامپیوترهای کوانتومی مقاوم در برابر خطا مناسب باشند.

نمودارهای عملکردی در مقاله نشان می‌دهند که اگر بازده نوری به بیش از 99.5% برسد، سیستم می‌تواند حالت‌هایی تولید کند که به‌طور نظری برای اجرای محاسبات کوانتومی مقاوم در برابر خطا کافی باشند.


🆔 @QuantumProgramming
🆔 http://instagram.com/Quantum.Programming

BY Quantum Programming


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/QuantumProgramming/619

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media.
from sa


Telegram Quantum Programming
FROM American