Telegram Group & Telegram Channel
Gumbel-Softmax - памятка себе на будущее

Итак, представим что у нас есть какая-то вероятностная модель, в которой сэмплирование из распределения является её частью. Самым банальным примером, пожалуй, является VAE.

VAE - это автоэнкодер, состоящий из моделей q(z|x) и p(x|z), которые выдают распределение на скрытую компоненту z по входу x и наоборот. В базовом варианте z имеет нормальное распределение N(m;d), и энкодер выдаёт параметры этого распределения - средние m и ст. отклонения d.

При обучении подобной модели у нас возникает градиент ошибки по сэмплу из z. Как пробросить градиент назад в модели "сквозь" это сэмплирование? В лоб сделать это не получится, и для этого применяют простой советский Reparametrization Trick.

Его суть в том, что процесс сэмплирования отделяют от основной цепочки вычислений и оформляют как входную вершину вычислительного графа. В случае с нормальным распределением, мы сначала отдельно сэмплируем eps из N(0;1), а затем умножаем его на d и прибавляем m. По факту результат тот же самый, но он превращает нейросеть в цепочку детерминированных операций и позволяет пробрасывать градиент бэкпропом.

Gumbel-Softmax - то же самое, но для категориального распределения.

Вместо обычного VAE давайте взглянем на VQ-VAE - альтернативный вариант автоэнкодера, в котором вместо сжатия в нормальное распределение происходит сжатие в категориальное распределение на "коды". Внутри модели хранится Codebook, который превращает номер кода обратно в эмбеддинг во время декодинга.

Итак, в сердцевине модели находится такая цепочка вычислений: logits -> probs -> one-hot vector -> embedding. При переходе из probs к one-hot vector как раз и возникает сэмплирование из категориального распределения, сквозь которое нельзя пробросить градиент напрямую.

Gumbel-Softmax позволит приближенно осуществить этот переход с помощью детерминированной операции. Если к логарифму от вектора probs прибавить вектор из распределения Гумбеля (аналог N(0;1) в данном случае), то argmax итогового вектора будет распределён так же, как и исходное распределение.

Последняя проблема - argmax сам недифференцируем, поэтому его заменяют на софтмакс с маленькой температурой. В итоге, получая на вход [0.2;0.8], эта операция будет выдавать [0.001; 0.999] в 80% случаев и [0.999;0.001] в 20 процентах случаев.

Самый большой затык вызывает следующий вопрос - в чём профит этой штуки по сравнению с тем, чтобы просто использовать [0.2;0.8] в дальнейших операциях, если там всё равно не требуется строгий one-hot вектор?

Я объясняю это так - во время обучения мы хотим, чтобы все последующие части модели получали на вход реалистичные сэмплы из категориального распределения. Если наша модель будет учиться на размазанных векторах, то мы не сможем во время инференса просто начать сэмплировать код - декодер не выкупит этот пранк.

А что делать в случае, когда нам реально нужен строгий one-hot вектор, например, если это RL и мы совершаем действие? Авторы оригинальной статьи предлагают комбинировать Straight Through Estimator и Gumbel Softmax, т.е. использовать [1; 0], а градиент пробрасывать так, как будто там был [0.999; 0.001]. Но я никогда не встречал применения такой схемы.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/265
Create:
Last Update:

Gumbel-Softmax - памятка себе на будущее

Итак, представим что у нас есть какая-то вероятностная модель, в которой сэмплирование из распределения является её частью. Самым банальным примером, пожалуй, является VAE.

VAE - это автоэнкодер, состоящий из моделей q(z|x) и p(x|z), которые выдают распределение на скрытую компоненту z по входу x и наоборот. В базовом варианте z имеет нормальное распределение N(m;d), и энкодер выдаёт параметры этого распределения - средние m и ст. отклонения d.

При обучении подобной модели у нас возникает градиент ошибки по сэмплу из z. Как пробросить градиент назад в модели "сквозь" это сэмплирование? В лоб сделать это не получится, и для этого применяют простой советский Reparametrization Trick.

Его суть в том, что процесс сэмплирования отделяют от основной цепочки вычислений и оформляют как входную вершину вычислительного графа. В случае с нормальным распределением, мы сначала отдельно сэмплируем eps из N(0;1), а затем умножаем его на d и прибавляем m. По факту результат тот же самый, но он превращает нейросеть в цепочку детерминированных операций и позволяет пробрасывать градиент бэкпропом.

Gumbel-Softmax - то же самое, но для категориального распределения.

Вместо обычного VAE давайте взглянем на VQ-VAE - альтернативный вариант автоэнкодера, в котором вместо сжатия в нормальное распределение происходит сжатие в категориальное распределение на "коды". Внутри модели хранится Codebook, который превращает номер кода обратно в эмбеддинг во время декодинга.

Итак, в сердцевине модели находится такая цепочка вычислений: logits -> probs -> one-hot vector -> embedding. При переходе из probs к one-hot vector как раз и возникает сэмплирование из категориального распределения, сквозь которое нельзя пробросить градиент напрямую.

Gumbel-Softmax позволит приближенно осуществить этот переход с помощью детерминированной операции. Если к логарифму от вектора probs прибавить вектор из распределения Гумбеля (аналог N(0;1) в данном случае), то argmax итогового вектора будет распределён так же, как и исходное распределение.

Последняя проблема - argmax сам недифференцируем, поэтому его заменяют на софтмакс с маленькой температурой. В итоге, получая на вход [0.2;0.8], эта операция будет выдавать [0.001; 0.999] в 80% случаев и [0.999;0.001] в 20 процентах случаев.

Самый большой затык вызывает следующий вопрос - в чём профит этой штуки по сравнению с тем, чтобы просто использовать [0.2;0.8] в дальнейших операциях, если там всё равно не требуется строгий one-hot вектор?

Я объясняю это так - во время обучения мы хотим, чтобы все последующие части модели получали на вход реалистичные сэмплы из категориального распределения. Если наша модель будет учиться на размазанных векторах, то мы не сможем во время инференса просто начать сэмплировать код - декодер не выкупит этот пранк.

А что делать в случае, когда нам реально нужен строгий one-hot вектор, например, если это RL и мы совершаем действие? Авторы оригинальной статьи предлагают комбинировать Straight Through Estimator и Gumbel Softmax, т.е. использовать [1; 0], а градиент пробрасывать так, как будто там был [0.999; 0.001]. Но я никогда не встречал применения такой схемы.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/265

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements.
from sa


Telegram Knowledge Accumulator
FROM American