Telegram Group & Telegram Channel
Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models
Xianjun Yang et al, 2023
Препринт

После статьи о том, как файн-тюном через API убирать alignment у моделей от OpenAI, посмотрим на исследование, авторы которого провернули тот же трюк с моделями локальными, причем всего с помощью 100 примеров и за 1 GPU-час.

Метод выглядит следующим образом. Сначала исследователи в три шага собира ют датасет:

1. Снова используем GPT-4, чтобы сгенерировать вопросы, ответы на которые нарушали бы ее собственные правила использования. Это после дедупликации дает 11692 вопроса.
2. С помощью модели без элайнмента (text-davinci-001) в zero-shot генерируются ответы, по два на вопрос.
3. Ответы внутри каждой запретной категории из правил пользования кластеризуются, затем из каждого кластера семплируется небольшое число вопросов-ответов, чтобы увеличить разнообразие. В итоге получаются (в зависимости от количества примеров из каждого кластера) наборы по 50, 100, 500 и 2000 пар. Набор из 100 проверяется вручную и слегка корректируется.

Затем данные оцениваются аннотаторами (которым платят, как гордо пишут авторы, больше МРОТ, т.е. минимум 7,26$). Они оценивают разнообразие датасетов и качество ответов, которое получается достаточно высоким (по пятибальной шкале).

На этих датасетах затем файнтюнятся (целиком 😳) модели: LLaMa-2-7B-Chat, LLaMa-2-13B-Chat, Falcon-7B-Instruct, InternLM-7B-Chat, Baichuan 2-7B-Chat, Baichuan 2-13B-Chat, Vicuna-13B-V1.5, Vicuna-7B-V1.5. Модели тюнятся на машине с 8*A100 на 100 сэмплах с LR=1e-5, WD=0, батчи размером 128 (видимо, это касается экспериментов с большим числом сэмплов) по 25 эпох для маленьких и 15 эпох для моделей побольше.



group-telegram.com/llmsecurity/454
Create:
Last Update:

Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models
Xianjun Yang et al, 2023
Препринт

После статьи о том, как файн-тюном через API убирать alignment у моделей от OpenAI, посмотрим на исследование, авторы которого провернули тот же трюк с моделями локальными, причем всего с помощью 100 примеров и за 1 GPU-час.

Метод выглядит следующим образом. Сначала исследователи в три шага собира ют датасет:

1. Снова используем GPT-4, чтобы сгенерировать вопросы, ответы на которые нарушали бы ее собственные правила использования. Это после дедупликации дает 11692 вопроса.
2. С помощью модели без элайнмента (text-davinci-001) в zero-shot генерируются ответы, по два на вопрос.
3. Ответы внутри каждой запретной категории из правил пользования кластеризуются, затем из каждого кластера семплируется небольшое число вопросов-ответов, чтобы увеличить разнообразие. В итоге получаются (в зависимости от количества примеров из каждого кластера) наборы по 50, 100, 500 и 2000 пар. Набор из 100 проверяется вручную и слегка корректируется.

Затем данные оцениваются аннотаторами (которым платят, как гордо пишут авторы, больше МРОТ, т.е. минимум 7,26$). Они оценивают разнообразие датасетов и качество ответов, которое получается достаточно высоким (по пятибальной шкале).

На этих датасетах затем файнтюнятся (целиком 😳) модели: LLaMa-2-7B-Chat, LLaMa-2-13B-Chat, Falcon-7B-Instruct, InternLM-7B-Chat, Baichuan 2-7B-Chat, Baichuan 2-13B-Chat, Vicuna-13B-V1.5, Vicuna-7B-V1.5. Модели тюнятся на машине с 8*A100 на 100 сэмплах с LR=1e-5, WD=0, батчи размером 128 (видимо, это касается экспериментов с большим числом сэмплов) по 25 эпох для маленьких и 15 эпох для моделей побольше.

BY llm security и каланы






Share with your friend now:
group-telegram.com/llmsecurity/454

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat.
from sa


Telegram llm security и каланы
FROM American