🖥Skorch позволяет использовать модели PyTorch с интерфейсом, аналогичным scikit-learn (Sklearn). Это делает обучение и валидацию PyTorch-моделей проще и понятнее, особенно для тех, кто уже знаком с API Sklearn.
from skorch import NeuralNetClassifier
model = NeuralNetClassifier( module=MyClassifier, # Класс модели на PyTorch lr=0.001, # Скорость обучения batch_size=64, # Размер батча criterion=nn.CrossEntropyLoss, # Функция потерь optimizer=optim.Adam # Оптимизатор )
Здесь создаётся обёртка NeuralNetClassifier, которая делает модель PyTorch совместимой с .fit(), .predict() и другими методами Sklearn.
📌Обучение:
model.fit(X_train, y_train) Ты обучаешь модель так же, как и в Sklearn. Это удобно и не требует написания собственного цикла обучения.
С помощью Skorch ты получаешь:
- удобный Sklearn-подобный API для PyTorch-моделей;
- автоматический вывод метрик обучения;
- лёгкую интеграцию с GridSearchCV, Pipeline и другими инструментами Scikit-learn.
🖥Skorch позволяет использовать модели PyTorch с интерфейсом, аналогичным scikit-learn (Sklearn). Это делает обучение и валидацию PyTorch-моделей проще и понятнее, особенно для тех, кто уже знаком с API Sklearn.
from skorch import NeuralNetClassifier
model = NeuralNetClassifier( module=MyClassifier, # Класс модели на PyTorch lr=0.001, # Скорость обучения batch_size=64, # Размер батча criterion=nn.CrossEntropyLoss, # Функция потерь optimizer=optim.Adam # Оптимизатор )
Здесь создаётся обёртка NeuralNetClassifier, которая делает модель PyTorch совместимой с .fit(), .predict() и другими методами Sklearn.
📌Обучение:
model.fit(X_train, y_train) Ты обучаешь модель так же, как и в Sklearn. Это удобно и не требует написания собственного цикла обучения.
С помощью Skorch ты получаешь:
- удобный Sklearn-подобный API для PyTorch-моделей;
- автоматический вывод метрик обучения;
- лёгкую интеграцию с GridSearchCV, Pipeline и другими инструментами Scikit-learn.
Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. There was another possible development: Reuters also reported that Ukraine said that Belarus could soon join the invasion of Ukraine. However, the AFP, citing a Pentagon official, said the U.S. hasn’t yet seen evidence that Belarusian troops are in Ukraine. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? Despite Telegram's origins, its approach to users' security has privacy advocates worried. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.”
from sa