Telegram Group & Telegram Channel
ИИ для социальных исследований: новые подходы к качественным и количественным методам

В статье "Generative AI for Social Research: Going Native with Artificial Intelligence", опубликованной в Sociologica, Pilati, Munk и Venturini представляют обзор новых способов применения генеративного ИИ в социальных науках. Авторы не ограничиваются описанием возможностей, а акцентируют внимание на методологических аспектах, подчеркивая сближение качественных и количественных методов и переход к "нативно-цифровым" подходам.

Статья рассматривает два основных направления использования генеративного ИИ в социальных исследованиях:

Сглаживание границы между качественными и количественными методами: LLM (большие языковые модели) демонстрируют эффективность как в качественных задачах (чистка данных, аннотация, анализ нарративов), так и в количественных (создание опросников, анализ статистических моделей). Это разрушает традиционное разделение методов и открывает новые возможности для исследователей.

Переход к "нативно-цифровым" методам: Авторы призывают к использованию ИИ не просто как инструмента для обработки существующих данных, но и как метода генерации новых данных и анализа цифровых инфраструктур. Это предполагает более глубокое понимание того, как ИИ "видит" мир и как его модели отражают культурные и социальные контексты.

Примеры использования генеративного ИИ:

Качественные исследования: LLM используются для очистки транскрипций интервью, аннотации данных, обнаружения сюжетов в литературных текстах, проведения полуструктурированных интервью и анализа мультимодальных данных.

Количественные исследования: LLM применяются для создания адаптивных опросников, улучшения точности статистических моделей и автоматизации рутинных задач.

Анализ культурных и социальных контекстов: Исследования фокусируются на выявлении культурных предвзятостей LLM, сравнении их ответов с ответами людей из разных культурных групп и анализе внутренних механизмов работы моделей.

Статья призывает к осмысленному использованию генеративного ИИ в социальных исследованиях, подчеркивая необходимость развития новых методологических подходов и критического анализа результатов. Авторы предлагают рассматривать ИИ не только как инструмент, но и как объект исследования, что позволит глубоко понять его возможности и ограничения. Дальнейшие исследования в этом направлении обещают значительный прогресс в социальных науках.



group-telegram.com/selfmadeLibrary/855
Create:
Last Update:

ИИ для социальных исследований: новые подходы к качественным и количественным методам

В статье "Generative AI for Social Research: Going Native with Artificial Intelligence", опубликованной в Sociologica, Pilati, Munk и Venturini представляют обзор новых способов применения генеративного ИИ в социальных науках. Авторы не ограничиваются описанием возможностей, а акцентируют внимание на методологических аспектах, подчеркивая сближение качественных и количественных методов и переход к "нативно-цифровым" подходам.

Статья рассматривает два основных направления использования генеративного ИИ в социальных исследованиях:

Сглаживание границы между качественными и количественными методами: LLM (большие языковые модели) демонстрируют эффективность как в качественных задачах (чистка данных, аннотация, анализ нарративов), так и в количественных (создание опросников, анализ статистических моделей). Это разрушает традиционное разделение методов и открывает новые возможности для исследователей.

Переход к "нативно-цифровым" методам: Авторы призывают к использованию ИИ не просто как инструмента для обработки существующих данных, но и как метода генерации новых данных и анализа цифровых инфраструктур. Это предполагает более глубокое понимание того, как ИИ "видит" мир и как его модели отражают культурные и социальные контексты.

Примеры использования генеративного ИИ:

Качественные исследования: LLM используются для очистки транскрипций интервью, аннотации данных, обнаружения сюжетов в литературных текстах, проведения полуструктурированных интервью и анализа мультимодальных данных.

Количественные исследования: LLM применяются для создания адаптивных опросников, улучшения точности статистических моделей и автоматизации рутинных задач.

Анализ культурных и социальных контекстов: Исследования фокусируются на выявлении культурных предвзятостей LLM, сравнении их ответов с ответами людей из разных культурных групп и анализе внутренних механизмов работы моделей.

Статья призывает к осмысленному использованию генеративного ИИ в социальных исследованиях, подчеркивая необходимость развития новых методологических подходов и критического анализа результатов. Авторы предлагают рассматривать ИИ не только как инструмент, но и как объект исследования, что позволит глубоко понять его возможности и ограничения. Дальнейшие исследования в этом направлении обещают значительный прогресс в социальных науках.

BY какая-то библиотека


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/selfmadeLibrary/855

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights.
from sa


Telegram какая-то библиотека
FROM American