Telegram Group & Telegram Channel
Вы ничего не знаете про AI (NLP), если не читали эти 10 статей

Выбил себе про-план в опенаи, теперь могу делать дип ресерч с кликбейтными заголовками. Потестил на NLP, звучит разумно.


1. Hochreiter & Schmidhuber (1997) – LSTM. Решает проблему исчезающего градиента в RNN, позволяя моделировать длинные зависимости. (LSTM, sequence modeling)

2. Mikolov et al. (2013) – Word2Vec. Ввел плотные векторные представления слов, заложив основу для современных эмбеддингов. (word2vec, embeddings, distributed representations)

3. Charniak (2000) – Probabilistic Parsing. Показал, что вероятностные методы улучшают синтаксический разбор текста. (probabilistic parsing, syntax, NLP pipelines)

4. Bahdanau et al. (2015) – Attention in Seq2Seq. Ввел механизм внимания, улучшив машинный перевод и работу с длинными текстами. (attention mechanism, seq2seq, neural machine translation)

5. Vaswani et al. (2017) – Transformer: Attention Is All You Need. Убрал рекуррентность, введя self-attention, сделав NLP модели быстрее и мощнее. (Transformer, self-attention, deep learning)

6. Devlin et al. (2019) – BERT. Ввел bidirectional attention и pre-training, задав стандарт NLP-моделям. (BERT, masked language modeling, transfer learning)

7. Brown et al. (2020) – GPT-3: Few-Shot Learning. Доказал, что масштабирование параметров улучшает генерацию текста без дообучения. (GPT-3, few-shot learning, autoregressive models)

8. Lewis et al. (2020) – RAG (Retrieval-Augmented Generation). Улучшил генерацию текста, добавив поиск в базе знаний. (retrieval-augmented generation, knowledge-intensive NLP)

9. Christiano et al. (2017) – RLHF (Reinforcement Learning from Human Feedback). Ввел RLHF, позволяя моделям обучаться на человеческих предпочтениях. (RLHF, reinforcement learning, AI alignment)

10. Ouyang et al. (2022) – InstructGPT (RLHF для инструкций). Сделал LLM послушными, научив следовать инструкциям через RLHF. (instruction tuning, RLHF, safe AI)

Пасхалка



group-telegram.com/savostyanov_dmitry/620
Create:
Last Update:

Вы ничего не знаете про AI (NLP), если не читали эти 10 статей

Выбил себе про-план в опенаи, теперь могу делать дип ресерч с кликбейтными заголовками. Потестил на NLP, звучит разумно.


1. Hochreiter & Schmidhuber (1997) – LSTM. Решает проблему исчезающего градиента в RNN, позволяя моделировать длинные зависимости. (LSTM, sequence modeling)

2. Mikolov et al. (2013) – Word2Vec. Ввел плотные векторные представления слов, заложив основу для современных эмбеддингов. (word2vec, embeddings, distributed representations)

3. Charniak (2000) – Probabilistic Parsing. Показал, что вероятностные методы улучшают синтаксический разбор текста. (probabilistic parsing, syntax, NLP pipelines)

4. Bahdanau et al. (2015) – Attention in Seq2Seq. Ввел механизм внимания, улучшив машинный перевод и работу с длинными текстами. (attention mechanism, seq2seq, neural machine translation)

5. Vaswani et al. (2017) – Transformer: Attention Is All You Need. Убрал рекуррентность, введя self-attention, сделав NLP модели быстрее и мощнее. (Transformer, self-attention, deep learning)

6. Devlin et al. (2019) – BERT. Ввел bidirectional attention и pre-training, задав стандарт NLP-моделям. (BERT, masked language modeling, transfer learning)

7. Brown et al. (2020) – GPT-3: Few-Shot Learning. Доказал, что масштабирование параметров улучшает генерацию текста без дообучения. (GPT-3, few-shot learning, autoregressive models)

8. Lewis et al. (2020) – RAG (Retrieval-Augmented Generation). Улучшил генерацию текста, добавив поиск в базе знаний. (retrieval-augmented generation, knowledge-intensive NLP)

9. Christiano et al. (2017) – RLHF (Reinforcement Learning from Human Feedback). Ввел RLHF, позволяя моделям обучаться на человеческих предпочтениях. (RLHF, reinforcement learning, AI alignment)

10. Ouyang et al. (2022) – InstructGPT (RLHF для инструкций). Сделал LLM послушными, научив следовать инструкциям через RLHF. (instruction tuning, RLHF, safe AI)

Пасхалка

BY Дмитрий Савостьянов Вещает


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/savostyanov_dmitry/620

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. In 2018, Russia banned Telegram although it reversed the prohibition two years later.
from us


Telegram Дмитрий Савостьянов Вещает
FROM American