group-telegram.com/selfmadeLibrary/852
Last Update:
ИИ-ансамбли для автоматической генерации аннотированных библиографий: новый уровень точности и эффективности
Генерация аннотированных библиографий – трудоемкий и требующий значительных экспертных знаний процесс. В новой работе Серхио Бермехо предлагается инновационный подход к автоматизации этой задачи с использованием ансамблей больших языковых моделей (LLM). Вместо использования одной LLM, Бермехо предлагает трехуровневую архитектуру, в которой несколько LLM работают совместно, играя разные роли: генерация текста, оценка и суммирование.
Как это работает?
Генерация: Несколько LLM с различными гиперпараметрами (температура, top-k, top-p) генерируют разнообразные варианты аннотаций для одной и той же статьи. Это создаёт разнообразие вывода, что крайне важно для повышения качества итогового результата.
Оценка: Другая LLM выступает в роли "судьи", оценивая сгенерированные аннотации по таким критериям, как релевантность, точность и связность. Этот подход объективнее, чем использование традиционных метрик качества текста.
Суммирование: Наконец, третья LLM объединяет и уточняет лучшие аннотации, выбранные "судьей", используя методы суммирования и удаления избыточной информации.
Результаты впечатляют:
Эксперименты показали значительное улучшение качества аннотаций, сгенерированных ансамблем LLM, по сравнению с результатами отдельных моделей. В частности, метод "Top M Responses" показал улучшение читаемости на 38% и сокращение избыточности контента на 51%. Это демонстрирует эффективность использования ансамблей LLM для автоматизации сложных задач, требующих как генерации текста, так и критической оценки информации.
#ИИ_для_кабинетных_исследований
BY какая-то библиотека

Share with your friend now:
group-telegram.com/selfmadeLibrary/852