Telegram Group & Telegram Channel
💡 فراتر از ریاضی و پایتون: دیگر مهارت های کلیدی علوم داده که باید توسعه دهید.

❗️نقشه راه موفقیت در علم داده مسیرهای مختلفی را ارائه می‌دهد، اما بیشتر آنها تمرکز قوی بر مهارت‌های ریاضی و برنامه نویسی دارند.

🔴این پست بر روی برخی از زمینه‌هایی که ممکن است بخواهید در آینده کاوش کنید، تمرکز می‌کند و توصیه‌های عملی را از نویسندگانی که عمیقاً در بخش گسترده‌ای از نقش‌های صنعتی و دانشگاهی نقش دارند، ارائه می‌کند. از تسلط بر زیرساخت‌های داده تا گسترش مهارت‌های داستان‌گویی، اجازه دهید نگاهی دقیق به برخی از آن حوزه‌های جانبی – اما همچنان حیاتی – رشد بالقوه بیندازیم.

🔠 فراتر از مهارت ها: باز کردن پتانسیل کامل دانشمندان داده.
 دانشمندان داده دارای دیدگاه منحصر به فردی هستند که به آنها امکان می‌دهد ایده‌های تجاری نوآورانه خود را ارائه دهند - ایده‌هایی که جدید، استراتژیک یا متمایز هستند و بعید است که از کسی جز یک دانشمند داده سرچشمه بگیرند. اریک کولسون
 فرضیه‌ای قابل تامل را گسترش می‌دهد، یعنی اینکه شرکت‌ها با تمرکز بیش از حد بر مهارت‌های فنی خود، به بهای خلاقیت و تفکر بیرون از جعبه، از دانشمندان داده استفاده کمتری می‌کنند.

🔠 سه درس مهم داده که از یک کنفرانس داده ای که به هوش مصنوعی ربطی ندارد آموختم. 
هوش مصنوعی در سال‌های اخیر به قدری بر مکالمات تسلط داشته است که شنیدن راه‌های دیگر برای دانشمندان داده‌ای برای ماندن در لبه‌های پیشرفته حوزه خود احساس طراوت می‌کند. Nithya Ramamoorthy تجربه اخیر خود در یک کنفرانس را منعکس می‌کند و اینکه چگونه الهام بخش او برای توجه بیشتر به موضوعاتی است که ممکن است کمتر از آخرین LLM به نظر برسند، اما می‌توانند ارزش شما را به عنوان یک متخصص داده افزایش دهند، از کنترل هزینه و ترجمه داده ها به طراحی اطلاعات

🔠 سیستم بهره وری نهایی برای رهبران علم داده.
 برای هر کسی که در مسیر مدیریت علم داده است - چه در مراحل اولیه یا عمیق‌تر در حرفه شما - گاهی اوقات این احساس می‌شود که انتظار می‌رود مهارت‌های رهبری به طور ارگانیک با گذشت زمان رشد کنند. در حالی که این ممکن است از برخی جهات درست باشد، آخرین مشارکت ربکا ویکری برخی از گام‌های مشخصی را که می‌توانید انجام دهید تا اطمینان حاصل کنید که تمرکز و بهره‌وری خود را حتی با افزایش تقاضاهای نقشتان انجام دهید، بیان می‌کند.

🔠 تسلط بر ریاضیات پشت پاکت شما را به دانشمند داده بهتری تبدیل می کند. 
آنچه در مقاله جدید Torsten Walbaum
 پیشنهاد می‌کند این است که متخصصان داده ممکن است بخواهند کمتر نگران فرمول‌ها و مدل‌سازی‌های پیچیده باشند و به خود اجازه دهند با تولید تخمین‌های خشن - اما محکم - راحت‌تر رشد کنند.

🔠 از AI Canvas تا MLOps Stack Canvas: آیا آنها ضروری هستند؟

 با افزایش پیچیدگی ابزارها و پشته‌های داده، برای ذینفعان محصول بسیار آسان می‌شود که ردیابی نحوه کار همه قطعات متحرک با هم را از دست بدهند. Chayma Zatout اینجاست تا با مقدمه‌ای عملی برای ساخت و استفاده از بوم‌ها، «یک چارچوب بصری که به افراد و تیم‌ها کمک می‌کند تا جنبه‌های مختلف یک پروژه را به شکلی ساختاریافته نقشه‌برداری و تجزیه و تحلیل کنند.

🔠 آموزش AWS Bedrock که آرزو می‌کردم داشته باشم: هر آنچه که برای آماده کردن دستگاه خود برای زیرساخت AWS باید بدانید. 
چگونه می‌توانید یک نمونه اولیه یادگیری ماشینی زیبا را در نوت بوک خود قرار دهید و آن را به یک برنامه وب قدرتمند تمام پشته توسعه دهید؟ میندا مایرز با برداشتن چند قدم از جزئیات بی‌نظیر تجزیه و تحلیل داده‌ها، متخصصان داده را تشویق می‌کند تا تنظیمات فناوری خود را در نظر بگیرند و آن را برای گردش‌های کاری روان و مؤثر بهینه کنند.

🔠 از بینش تا تأثیر: مهارت‌های ارائه‌ای که هر دانشمند داده به آن نیاز دارد.
این دقیقاً خبری نیست که داستان سرایی قوی هسته اصلی بسیاری از نقش‌های علم داده است. هر چند در بسیاری از برنامه‌ها یک منطقه تحت پوشش باقی می‌ماند - یکی از مواردی که فقط از شما انتظار می‌رود که به طور جادویی در آن به تنهایی پیشرفت کنید. یو دونگ در آخرین پست خود به برخی از جنبه‌های اصلی ارائه‌های موفق می‌پردازد و نکات مشخصی را در مورد طراحی اسلایدهای موفق درج می کند.

🔠نحوه ایجاد فرصت ها و موفقیت در برنامه های شغلی علم داده
همانطور که رابسون تیگر روشن می‌سازد، فرآیند تبدیل شدن به یک متقاضی شغل برجسته و شناسایی فرصت‌های مناسب، مستلزم مجموعه‌ای از مهارت‌های خاص خود است که بیشتر آن‌ها ارتباط بسیار کمی با داده‌ها یا الگوریتم‌ها دارند و در عوض حول محور ارائه خود (و بازاریابی)، شبکه‌سازی و ارتباطات می‌چرخند.

🌐منبع
#️⃣#IDSchools
#️⃣#IDS
#️⃣#IDS_Math

✉️@IDSchools
✉️@IDS_Math
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/IDS_Math/264
Create:
Last Update:

💡 فراتر از ریاضی و پایتون: دیگر مهارت های کلیدی علوم داده که باید توسعه دهید.

❗️نقشه راه موفقیت در علم داده مسیرهای مختلفی را ارائه می‌دهد، اما بیشتر آنها تمرکز قوی بر مهارت‌های ریاضی و برنامه نویسی دارند.

🔴این پست بر روی برخی از زمینه‌هایی که ممکن است بخواهید در آینده کاوش کنید، تمرکز می‌کند و توصیه‌های عملی را از نویسندگانی که عمیقاً در بخش گسترده‌ای از نقش‌های صنعتی و دانشگاهی نقش دارند، ارائه می‌کند. از تسلط بر زیرساخت‌های داده تا گسترش مهارت‌های داستان‌گویی، اجازه دهید نگاهی دقیق به برخی از آن حوزه‌های جانبی – اما همچنان حیاتی – رشد بالقوه بیندازیم.

🔠 فراتر از مهارت ها: باز کردن پتانسیل کامل دانشمندان داده.
 دانشمندان داده دارای دیدگاه منحصر به فردی هستند که به آنها امکان می‌دهد ایده‌های تجاری نوآورانه خود را ارائه دهند - ایده‌هایی که جدید، استراتژیک یا متمایز هستند و بعید است که از کسی جز یک دانشمند داده سرچشمه بگیرند. اریک کولسون
 فرضیه‌ای قابل تامل را گسترش می‌دهد، یعنی اینکه شرکت‌ها با تمرکز بیش از حد بر مهارت‌های فنی خود، به بهای خلاقیت و تفکر بیرون از جعبه، از دانشمندان داده استفاده کمتری می‌کنند.

🔠 سه درس مهم داده که از یک کنفرانس داده ای که به هوش مصنوعی ربطی ندارد آموختم. 
هوش مصنوعی در سال‌های اخیر به قدری بر مکالمات تسلط داشته است که شنیدن راه‌های دیگر برای دانشمندان داده‌ای برای ماندن در لبه‌های پیشرفته حوزه خود احساس طراوت می‌کند. Nithya Ramamoorthy تجربه اخیر خود در یک کنفرانس را منعکس می‌کند و اینکه چگونه الهام بخش او برای توجه بیشتر به موضوعاتی است که ممکن است کمتر از آخرین LLM به نظر برسند، اما می‌توانند ارزش شما را به عنوان یک متخصص داده افزایش دهند، از کنترل هزینه و ترجمه داده ها به طراحی اطلاعات

🔠 سیستم بهره وری نهایی برای رهبران علم داده.
 برای هر کسی که در مسیر مدیریت علم داده است - چه در مراحل اولیه یا عمیق‌تر در حرفه شما - گاهی اوقات این احساس می‌شود که انتظار می‌رود مهارت‌های رهبری به طور ارگانیک با گذشت زمان رشد کنند. در حالی که این ممکن است از برخی جهات درست باشد، آخرین مشارکت ربکا ویکری برخی از گام‌های مشخصی را که می‌توانید انجام دهید تا اطمینان حاصل کنید که تمرکز و بهره‌وری خود را حتی با افزایش تقاضاهای نقشتان انجام دهید، بیان می‌کند.

🔠 تسلط بر ریاضیات پشت پاکت شما را به دانشمند داده بهتری تبدیل می کند. 
آنچه در مقاله جدید Torsten Walbaum
 پیشنهاد می‌کند این است که متخصصان داده ممکن است بخواهند کمتر نگران فرمول‌ها و مدل‌سازی‌های پیچیده باشند و به خود اجازه دهند با تولید تخمین‌های خشن - اما محکم - راحت‌تر رشد کنند.

🔠 از AI Canvas تا MLOps Stack Canvas: آیا آنها ضروری هستند؟

 با افزایش پیچیدگی ابزارها و پشته‌های داده، برای ذینفعان محصول بسیار آسان می‌شود که ردیابی نحوه کار همه قطعات متحرک با هم را از دست بدهند. Chayma Zatout اینجاست تا با مقدمه‌ای عملی برای ساخت و استفاده از بوم‌ها، «یک چارچوب بصری که به افراد و تیم‌ها کمک می‌کند تا جنبه‌های مختلف یک پروژه را به شکلی ساختاریافته نقشه‌برداری و تجزیه و تحلیل کنند.

🔠 آموزش AWS Bedrock که آرزو می‌کردم داشته باشم: هر آنچه که برای آماده کردن دستگاه خود برای زیرساخت AWS باید بدانید. 
چگونه می‌توانید یک نمونه اولیه یادگیری ماشینی زیبا را در نوت بوک خود قرار دهید و آن را به یک برنامه وب قدرتمند تمام پشته توسعه دهید؟ میندا مایرز با برداشتن چند قدم از جزئیات بی‌نظیر تجزیه و تحلیل داده‌ها، متخصصان داده را تشویق می‌کند تا تنظیمات فناوری خود را در نظر بگیرند و آن را برای گردش‌های کاری روان و مؤثر بهینه کنند.

🔠 از بینش تا تأثیر: مهارت‌های ارائه‌ای که هر دانشمند داده به آن نیاز دارد.
این دقیقاً خبری نیست که داستان سرایی قوی هسته اصلی بسیاری از نقش‌های علم داده است. هر چند در بسیاری از برنامه‌ها یک منطقه تحت پوشش باقی می‌ماند - یکی از مواردی که فقط از شما انتظار می‌رود که به طور جادویی در آن به تنهایی پیشرفت کنید. یو دونگ در آخرین پست خود به برخی از جنبه‌های اصلی ارائه‌های موفق می‌پردازد و نکات مشخصی را در مورد طراحی اسلایدهای موفق درج می کند.

🔠نحوه ایجاد فرصت ها و موفقیت در برنامه های شغلی علم داده
همانطور که رابسون تیگر روشن می‌سازد، فرآیند تبدیل شدن به یک متقاضی شغل برجسته و شناسایی فرصت‌های مناسب، مستلزم مجموعه‌ای از مهارت‌های خاص خود است که بیشتر آن‌ها ارتباط بسیار کمی با داده‌ها یا الگوریتم‌ها دارند و در عوض حول محور ارائه خود (و بازاریابی)، شبکه‌سازی و ارتباطات می‌چرخند.

🌐منبع
#️⃣#IDSchools
#️⃣#IDS
#️⃣#IDS_Math

✉️@IDSchools
✉️@IDS_Math

BY ریاضی، آمار و علوم کامپیوتر - مدارس میان‌رشته‌ای


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/IDS_Math/264

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup.
from sg


Telegram ریاضی، آمار و علوم کامپیوتر - مدارس میان‌رشته‌ای
FROM American