Telegram Group & Telegram Channel
суммы косинусов и кубические уравнения

сегодня кода не будет, а будет математический комментарий к предыдущему посту (и не совсем популярный, сорри)

1.
напомню для начала квадратичный случай

пусть P простое число… и пускай вида 4k+1

квадратичная сумма Гаусса — это способ выразить √P через корни степени P из единицы с разными знаками (если показатель степени — квадратичный вычет mod P, то берем знак +1, для невычета — -1)

можно записать его в виде ∑cos(n² 2π/P)=√P

(например, для p=5: cos(2π/5)=(√5-1)/4, а вся сумма состоит из 4 равных косинусов и единицы)

2.
пускай теперь P=3k+1, а нас интересует тригонометрическая сумма G=∑cos(n³ 2π/P)

Галуа говорит нам, что G — корень кубического уравнения с рациональными коэффициентами, но какого конкретно?

полезно начать не с суммы G, а с кубической суммы Гаусса g

определяется она аналогично квадратичному случаю, но знак +1 теперь получают степени, являющиеся кубическими вычетами, еще два класса — знаки ω и ω² (ω — комплексный кубический корень из единицы)

(другими словами, g — линейная комбинация трех корней искомого уравнения, на которой группа Галуа действует просто умножением на ω)

снова |g|=√P, но теперь что-то хорошее получается при возведении не в квадрат, а в куб: g³=PП, где ПП' — разложение p на простые в Z[ω], а штрих обозначает комплексное сопряжение

3.
вернемся к тригонометрической сумме

G=g+g', поэтому (пользуясь описанными выше свойствами g)

G³=g³+g'³+3gg'(g+g')=P(П+П')+3PG,

т.е. G корень кубического уравнения x³-3Px-AP, где A=2ReП

чтобы получить уравнение буквально на суммы, которые рассматривались в предыдущем посте, нужно еще сделать замену x=-3t+1

4.
если хочется вычислить A без использования арифметики в Z[ω], то можно воспользоваться тем, что если P=ПП' в Z[ω], A=2ReП, то

4P=A²+27B²

такое представление единственно… с точностью до знаков; “наше” A — это то, которое дает остаткок 1 mod 3 (это вопрос про знак гауссовой суммы, который выше был заметен под ковер… там пусть и остается)

можно описать A и по-другому: количество решений по модулю P уравнения X³+Y³=1 равно P-2+A

5.
дискриминант уравнения x³-3Px-AP=0 как раз равен (27PB)²

вообще через корни из единицы (или, если угодно, через триг. функции рац. аргумента) можно выразить решения тех и только тех неприводимых кубических уравнений с рациональными коэффициентами, у которых дискриминант является полным квадратом (аналог для произвольной степени: группа Галуа должна быть абелевой)

уравнение x³=P, например, не подходит, а вот наше — вполне себе

надеюсь, что в написанном выше можно уже увидеть контуры рецепта для решения «в косинусах» произвольного кубического уравнения с квадратным дискриминантом

6.
если P=9m²-3m+1, то 4P=(3m-2)²+27m². В этом случае свободный член уравнения на триг. суммы является полным кубом (числа m, собственно) и формула Рамануджана для суммы кубических корней из корней уравнения дает особенно простой ответ:

2S³ = 3³√(mP)-6m+1

например, для P=73 имеем m=3 и ответ ³√((3³√219-17)/2); для P=31 имеем m=-2 и опечатку в заметке в Мат. просвещении



group-telegram.com/compmathweekly/23
Create:
Last Update:

суммы косинусов и кубические уравнения

сегодня кода не будет, а будет математический комментарий к предыдущему посту (и не совсем популярный, сорри)

1.
напомню для начала квадратичный случай

пусть P простое число… и пускай вида 4k+1

квадратичная сумма Гаусса — это способ выразить √P через корни степени P из единицы с разными знаками (если показатель степени — квадратичный вычет mod P, то берем знак +1, для невычета — -1)

можно записать его в виде ∑cos(n² 2π/P)=√P

(например, для p=5: cos(2π/5)=(√5-1)/4, а вся сумма состоит из 4 равных косинусов и единицы)

2.
пускай теперь P=3k+1, а нас интересует тригонометрическая сумма G=∑cos(n³ 2π/P)

Галуа говорит нам, что G — корень кубического уравнения с рациональными коэффициентами, но какого конкретно?

полезно начать не с суммы G, а с кубической суммы Гаусса g

определяется она аналогично квадратичному случаю, но знак +1 теперь получают степени, являющиеся кубическими вычетами, еще два класса — знаки ω и ω² (ω — комплексный кубический корень из единицы)

(другими словами, g — линейная комбинация трех корней искомого уравнения, на которой группа Галуа действует просто умножением на ω)

снова |g|=√P, но теперь что-то хорошее получается при возведении не в квадрат, а в куб: g³=PП, где ПП' — разложение p на простые в Z[ω], а штрих обозначает комплексное сопряжение

3.
вернемся к тригонометрической сумме

G=g+g', поэтому (пользуясь описанными выше свойствами g)

G³=g³+g'³+3gg'(g+g')=P(П+П')+3PG,

т.е. G корень кубического уравнения x³-3Px-AP, где A=2ReП

чтобы получить уравнение буквально на суммы, которые рассматривались в предыдущем посте, нужно еще сделать замену x=-3t+1

4.
если хочется вычислить A без использования арифметики в Z[ω], то можно воспользоваться тем, что если P=ПП' в Z[ω], A=2ReП, то

4P=A²+27B²

такое представление единственно… с точностью до знаков; “наше” A — это то, которое дает остаткок 1 mod 3 (это вопрос про знак гауссовой суммы, который выше был заметен под ковер… там пусть и остается)

можно описать A и по-другому: количество решений по модулю P уравнения X³+Y³=1 равно P-2+A

5.
дискриминант уравнения x³-3Px-AP=0 как раз равен (27PB)²

вообще через корни из единицы (или, если угодно, через триг. функции рац. аргумента) можно выразить решения тех и только тех неприводимых кубических уравнений с рациональными коэффициентами, у которых дискриминант является полным квадратом (аналог для произвольной степени: группа Галуа должна быть абелевой)

уравнение x³=P, например, не подходит, а вот наше — вполне себе

надеюсь, что в написанном выше можно уже увидеть контуры рецепта для решения «в косинусах» произвольного кубического уравнения с квадратным дискриминантом

6.
если P=9m²-3m+1, то 4P=(3m-2)²+27m². В этом случае свободный член уравнения на триг. суммы является полным кубом (числа m, собственно) и формула Рамануджана для суммы кубических корней из корней уравнения дает особенно простой ответ:

2S³ = 3³√(mP)-6m+1

например, для P=73 имеем m=3 и ответ ³√((3³√219-17)/2); для P=31 имеем m=-2 и опечатку в заметке в Мат. просвещении

BY Компьютерная математика Weekly




Share with your friend now:
group-telegram.com/compmathweekly/23

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford.
from sg


Telegram Компьютерная математика Weekly
FROM American