Telegram Group & Telegram Channel
🖥 Задача: "Оптимизация вероятности успеха в стохастической системе"

📌 Условие:

Вы работаете над системой, где каждый эксперимент (тест, запуск модели, продукт) может быть успешным или неуспешным.
Результат одного запуска — 1 (успех) или 0 (провал).

Известно:

- Вероятность успеха одного эксперимента — неизвестна, обозначим её как p.
- У вас есть N исторических наблюдений: x1, x2, ..., xN, где каждое xi равно 0 или 1.

Вопросы:

1. Построить оценку вероятности успеха p и доверительный интервал на уровне 95%.
2. Рассчитать, сколько экспериментов нужно запустить, чтобы вероятность выхода в прибыль была выше 95%, учитывая:
- стоимость одного запуска C;
- прибыль от одного успешного эксперимента R.

---

▪️ Подсказки:

- Для оценки p используйте биномиальную модель.
- Для доверительного интервала:
- Можно использовать нормальное приближение (если выборка большая),
- Или Wilson-интервал для аккуратности.

---

▪️ Что оценивается:

- Правильная работа с вероятностями и доверием.
- Способность адекватно аппроксимировать биномиальные распределения.
- Чистота и практичность вычислений.

---

▪️ Разбор возможного решения:

▪️ 1. Оценка вероятности успеха:


# p_hat - оценка вероятности успеха
p_hat = sum(xi_list) / N


где xi_list — список из 0 и 1 (результаты экспериментов).

▪️ 2. Доверительный интервал через нормальное приближение:


import math
z = 1.96 # для 95% доверия
std_error = math.sqrt(p_hat * (1 - p_hat) / N)
lower_bound = p_hat - z * std_error
upper_bound = p_hat + z * std_error


▪️ 3. Wilson-интервал (более аккуратный):


z = 1.96 # для 95% доверия
center = (p_hat + z**2 / (2 * N)) / (1 + z**2 / N)
margin = (z * math.sqrt((p_hat * (1 - p_hat) / N) + (z**2 / (4 * N**2)))) / (1 + z**2 / N)
lower_bound = center - margin
upper_bound = center + margin


---

▪️ 4. Прибыльность эксперимента:

Формула прибыли при n экспериментах:


profit = successes * R - n * C


Требуется:


P(profit > 0) >= 0.95


Число успехов должно быть больше определённой границы:


min_successes = (n * C) / R


Если n велико, количество успехов приближается к нормальному распределению:


mean_successes = n * p_hat
std_successes = math.sqrt(n * p_hat * (1 - p_hat))


Для нормального приближения можно написать:


# Вероятность успешности через нормальное распределение
from scipy.stats import norm

# Вероятность, что количество успехов больше нужного
prob = 1 - norm.cdf(min_successes, loc=mean_successes, scale=std_successes)


Тогда перебором или через уравнение ищем минимальное n, чтобы prob >= 0.95.

---

▪️ Возможные подводные камни:

- Нельзя использовать нормальное приближение при малом N — нужна биномиальная модель.
- Неверное задание границ доверительного интервала может привести к неправильной стратегии запуска.
- Плохое понимание соотношения C и R приводит к ошибочным выводам об окупаемости.

---

📌Дополнительные вопросы:

- Как бы вы учли, что прибыль от успеха — случайная величина?
- Как пересчитать стратегии, если вероятность успеха зависит от времени (`p = f(t)`)?
- Как применить байесовский апдейт для оценки вероятности успеха?

---
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/data_math/761
Create:
Last Update:

🖥 Задача: "Оптимизация вероятности успеха в стохастической системе"

📌 Условие:

Вы работаете над системой, где каждый эксперимент (тест, запуск модели, продукт) может быть успешным или неуспешным.
Результат одного запуска — 1 (успех) или 0 (провал).

Известно:

- Вероятность успеха одного эксперимента — неизвестна, обозначим её как p.
- У вас есть N исторических наблюдений: x1, x2, ..., xN, где каждое xi равно 0 или 1.

Вопросы:

1. Построить оценку вероятности успеха p и доверительный интервал на уровне 95%.
2. Рассчитать, сколько экспериментов нужно запустить, чтобы вероятность выхода в прибыль была выше 95%, учитывая:
- стоимость одного запуска C;
- прибыль от одного успешного эксперимента R.

---

▪️ Подсказки:

- Для оценки p используйте биномиальную модель.
- Для доверительного интервала:
- Можно использовать нормальное приближение (если выборка большая),
- Или Wilson-интервал для аккуратности.

---

▪️ Что оценивается:

- Правильная работа с вероятностями и доверием.
- Способность адекватно аппроксимировать биномиальные распределения.
- Чистота и практичность вычислений.

---

▪️ Разбор возможного решения:

▪️ 1. Оценка вероятности успеха:


# p_hat - оценка вероятности успеха
p_hat = sum(xi_list) / N


где xi_list — список из 0 и 1 (результаты экспериментов).

▪️ 2. Доверительный интервал через нормальное приближение:


import math
z = 1.96 # для 95% доверия
std_error = math.sqrt(p_hat * (1 - p_hat) / N)
lower_bound = p_hat - z * std_error
upper_bound = p_hat + z * std_error


▪️ 3. Wilson-интервал (более аккуратный):


z = 1.96 # для 95% доверия
center = (p_hat + z**2 / (2 * N)) / (1 + z**2 / N)
margin = (z * math.sqrt((p_hat * (1 - p_hat) / N) + (z**2 / (4 * N**2)))) / (1 + z**2 / N)
lower_bound = center - margin
upper_bound = center + margin


---

▪️ 4. Прибыльность эксперимента:

Формула прибыли при n экспериментах:


profit = successes * R - n * C


Требуется:


P(profit > 0) >= 0.95


Число успехов должно быть больше определённой границы:


min_successes = (n * C) / R


Если n велико, количество успехов приближается к нормальному распределению:


mean_successes = n * p_hat
std_successes = math.sqrt(n * p_hat * (1 - p_hat))


Для нормального приближения можно написать:


# Вероятность успешности через нормальное распределение
from scipy.stats import norm

# Вероятность, что количество успехов больше нужного
prob = 1 - norm.cdf(min_successes, loc=mean_successes, scale=std_successes)


Тогда перебором или через уравнение ищем минимальное n, чтобы prob >= 0.95.

---

▪️ Возможные подводные камни:

- Нельзя использовать нормальное приближение при малом N — нужна биномиальная модель.
- Неверное задание границ доверительного интервала может привести к неправильной стратегии запуска.
- Плохое понимание соотношения C и R приводит к ошибочным выводам об окупаемости.

---

📌Дополнительные вопросы:

- Как бы вы учли, что прибыль от успеха — случайная величина?
- Как пересчитать стратегии, если вероятность успеха зависит от времени (`p = f(t)`)?
- Как применить байесовский апдейт для оценки вероятности успеха?

---

BY Математика Дата саентиста


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/data_math/761

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. For tech stocks, “the main thing is yields,” Essaye said. "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes.
from sg


Telegram Математика Дата саентиста
FROM American