Telegram Group & Telegram Channel
🧠 Задача для дата-сайентистов: "Невидимая переменная"

У вас есть датафрейм с результатами тестирования модели A/B:


| user_id | group | conversion_rate |
|---------|--------|-----------------|
| 1001 | A | 0 |
| 1002 | A | 1 |
| 1003 | B | 0 |
| 1004 | B | 1 |
| ... | ... | ... |


По результатам A/B теста кажется, что разницы между группами нет. Вы проверили chi-squared test и Mann-Whitney — тоже ничего.

🧩 Однако ваш коллега утверждает, что в данных явно зарыта сильная зависимость, которую можно выявить, если «включить голову».

---

🔍 Вопрос:
Какой скрытый фактор мог полностью «маскировать» эффект от теста и как его можно вычислить, даже если он отсутствует в таблице напрямую?

💡 Подсказка: данные собирались в течение 30 дней, но колонка с датой/временем была потеряна при сохранении. Однако user_id — это не случайное число.

🎯 Что нужно сделать:

1. 🧠 Предположить, что user_id содержит зашумлённую информацию о времени регистрации (например, ID выдаются монотонно)
2. 🧮 Смоделировать зависимость результата от user_id и проверить, не является ли тест несбалансированным по времени
3. 📈 Построить метрику на основе сгруппированных окон по user_id и визуализировать смещение между группами A и B

🎯 Ключевая идея решения:

Хотя колонка с датой была потеряна, можно сделать разумное предположение:
🔸 `user_id` назначается **монотонно**, т.е. пользователи с меньшими ID пришли раньше.

Если эксперимент длился 30 дней, а пользователи приходили неравномерно, то:
- группа A могла доминировать в начале
- группа B — в конце

📉 А что, если в эти периоды поведение пользователей менялось? Например, была акция, баг, праздник?

🔍 **Решение: как восстановить эффект**

1. 🟤 Добавим к данным колонку `bucket = user_id // 100`, чтобы разбить пользователей на условные "временные окна"
2. 🟤 Для каждого `bucket` считаем среднюю `conversion_rate` отдельно по группам A и B
3. 🟤 Строим график `conversion_A - conversion_B` по bucket

Если кривая скачет — тест **несбалансирован по времени** и глобальное сравнение групп вводит в заблуждение.



group-telegram.com/data_math/766
Create:
Last Update:

🧠 Задача для дата-сайентистов: "Невидимая переменная"

У вас есть датафрейм с результатами тестирования модели A/B:


| user_id | group | conversion_rate |
|---------|--------|-----------------|
| 1001 | A | 0 |
| 1002 | A | 1 |
| 1003 | B | 0 |
| 1004 | B | 1 |
| ... | ... | ... |


По результатам A/B теста кажется, что разницы между группами нет. Вы проверили chi-squared test и Mann-Whitney — тоже ничего.

🧩 Однако ваш коллега утверждает, что в данных явно зарыта сильная зависимость, которую можно выявить, если «включить голову».

---

🔍 Вопрос:
Какой скрытый фактор мог полностью «маскировать» эффект от теста и как его можно вычислить, даже если он отсутствует в таблице напрямую?

💡 Подсказка: данные собирались в течение 30 дней, но колонка с датой/временем была потеряна при сохранении. Однако user_id — это не случайное число.

🎯 Что нужно сделать:

1. 🧠 Предположить, что user_id содержит зашумлённую информацию о времени регистрации (например, ID выдаются монотонно)
2. 🧮 Смоделировать зависимость результата от user_id и проверить, не является ли тест несбалансированным по времени
3. 📈 Построить метрику на основе сгруппированных окон по user_id и визуализировать смещение между группами A и B

🎯 Ключевая идея решения:

Хотя колонка с датой была потеряна, можно сделать разумное предположение:
🔸 `user_id` назначается **монотонно**, т.е. пользователи с меньшими ID пришли раньше.

Если эксперимент длился 30 дней, а пользователи приходили неравномерно, то:
- группа A могла доминировать в начале
- группа B — в конце

📉 А что, если в эти периоды поведение пользователей менялось? Например, была акция, баг, праздник?

🔍 **Решение: как восстановить эффект**

1. 🟤 Добавим к данным колонку `bucket = user_id // 100`, чтобы разбить пользователей на условные "временные окна"
2. 🟤 Для каждого `bucket` считаем среднюю `conversion_rate` отдельно по группам A и B
3. 🟤 Строим график `conversion_A - conversion_B` по bucket

Если кривая скачет — тест **несбалансирован по времени** и глобальное сравнение групп вводит в заблуждение.

BY Математика Дата саентиста


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/data_math/766

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. Founder Pavel Durov says tech is meant to set you free Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp.
from sg


Telegram Математика Дата саентиста
FROM American