Telegram Group & Telegram Channel
Один мой знакомый продуктовый аналитик при каждой нашей встрече ворчит: “геймдев — это какая-то своя реальность”. В чем-то он прав, пожалуй. Своя атмосфера и в данных, и в фокусах анализа, и в подходе к интерпретации.

Вот небольшой пример. Изучаю факторы отвала на третий день — сравниваю, как играют те, кто отвалился раньше и те, кто все-таки вернулся. Интересно, чем различается игровой опыт этих групп пользователей, так как это как раз может быть причиной отвала.

Вижу, что у отвалившихся пользователей выше винрейт и KDA. Вопрос, можно ли утверждать (при прочих равных), что пользователям слишком легко играть, нет челленджа и они отваливаются?

Самый правильный ответ тут — недостаточно данных. Но в большинстве случаев вывод про отсутствие челленджа будет все же неверен. В данном случае от нас скрыта еще одна переменная — сколько боев сыграли те, кто отвалился и кто вернулся, и что это за бои. Обычно отвалившиеся пользователи играют в два-три раза менее активно, чем вернувшиеся. В этом и кроется ключевая ловушка — бои пользователей, особенно в самом начале, неодинаковы (для других жанров единицы будут другими, но смысл тот же). Самые первые бои обычно стараются делать легкими (беззубые и/или понерфленные боты и т. д.) и потом постепенно повышать сложность. Плюс пользователи растут по рейтингу и попадают в котлы к игрокам с более высоким рейтингом и, соответственно, опытом и прокачкой.

В результате пользователи, которые вернулись на третий день, скорее всего отыграли больше боев. И в этих боях они сталкивались уже с более сложными ботами и опытными игроками. Отвалившиеся пользователи ушли на легких боях, и поэтому у них winrate/KDA вполне может выше. Но это никак не говорит о том, что пользователи отвалились из-за того, что им легко и нет челленджа. Для проверки этой гипотезы надо брать тех, кто сыграл, например, ровно 10 боев, и смотреть метрики вернувшихся и отвалившихся по ним.

Собственно, вот эта неоднородность опыта пользователей, которая зависит от внутриигровой прогрессии — одна из ключевых особенностей игровых данных, влияющих на метрики и на подходы к анализу и выводу.

PS. сижу теперь и думаю — кажется, вполне неплохой кейс получился для задачника по продуктовой аналитике или для собесов

#exercises



group-telegram.com/diceanalytics/97
Create:
Last Update:

Один мой знакомый продуктовый аналитик при каждой нашей встрече ворчит: “геймдев — это какая-то своя реальность”. В чем-то он прав, пожалуй. Своя атмосфера и в данных, и в фокусах анализа, и в подходе к интерпретации.

Вот небольшой пример. Изучаю факторы отвала на третий день — сравниваю, как играют те, кто отвалился раньше и те, кто все-таки вернулся. Интересно, чем различается игровой опыт этих групп пользователей, так как это как раз может быть причиной отвала.

Вижу, что у отвалившихся пользователей выше винрейт и KDA. Вопрос, можно ли утверждать (при прочих равных), что пользователям слишком легко играть, нет челленджа и они отваливаются?

Самый правильный ответ тут — недостаточно данных. Но в большинстве случаев вывод про отсутствие челленджа будет все же неверен. В данном случае от нас скрыта еще одна переменная — сколько боев сыграли те, кто отвалился и кто вернулся, и что это за бои. Обычно отвалившиеся пользователи играют в два-три раза менее активно, чем вернувшиеся. В этом и кроется ключевая ловушка — бои пользователей, особенно в самом начале, неодинаковы (для других жанров единицы будут другими, но смысл тот же). Самые первые бои обычно стараются делать легкими (беззубые и/или понерфленные боты и т. д.) и потом постепенно повышать сложность. Плюс пользователи растут по рейтингу и попадают в котлы к игрокам с более высоким рейтингом и, соответственно, опытом и прокачкой.

В результате пользователи, которые вернулись на третий день, скорее всего отыграли больше боев. И в этих боях они сталкивались уже с более сложными ботами и опытными игроками. Отвалившиеся пользователи ушли на легких боях, и поэтому у них winrate/KDA вполне может выше. Но это никак не говорит о том, что пользователи отвалились из-за того, что им легко и нет челленджа. Для проверки этой гипотезы надо брать тех, кто сыграл, например, ровно 10 боев, и смотреть метрики вернувшихся и отвалившихся по ним.

Собственно, вот эта неоднородность опыта пользователей, которая зависит от внутриигровой прогрессии — одна из ключевых особенностей игровых данных, влияющих на метрики и на подходы к анализу и выводу.

PS. сижу теперь и думаю — кажется, вполне неплохой кейс получился для задачника по продуктовой аналитике или для собесов

#exercises

BY аналитика на кубах


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/diceanalytics/97

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. False news often spreads via public groups, or chats, with potentially fatal effects. READ MORE This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands.
from sg


Telegram аналитика на кубах
FROM American